构造R^n子空间W一组正交基的算法:格拉姆-施密特方法。

《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法- 格拉姆-施密特方法的更多相关文章

  1. 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-基本概念与定理

    这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: ...

  2. 《Linear Algebra and Its Applications》-chaper1-线性方程组- 线性变换

    两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. ...

  3. 《Linear Algebra and Its Applications》-chaper4-向量空间-子空间、零空间、列空间

    在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: ...

  4. 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-最小二乘问题

    最小二乘问题: 结合之前给出向量空间中的正交.子空间W.正交投影.正交分解定理.最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了. 首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方 ...

  5. 《Linear Algebra and Its Applications》-chaper5-特征值与特征向量-基本概念

    基于之前章节的铺垫,我们这里能够很容易的引出特征向量和特征值的概念. 首先我们知道n x n矩阵的A和n维向量v的乘积会得到一个n维的向量,那么现在我们发现,经过计算u=Av,得到的向量u是和v共线的 ...

  6. 《Linear Algebra and Its Applications》-chaper3-行列式-克拉默法则

    计算线性方程组唯一解的克拉默法则:

  7. 《Linear Algebra and Its Applications》-chaper3-行列式-行列式初等变换

    承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面: (1)行列式3个初等变换的证明. (2)转置行列式与原行列式相等的证明. (3)定理det(AB) = d ...

  8. 《Linear Algebra and Its Applications》-chaper3-行列式-从一个逆矩阵算法证明引入的行列式

    这一章节开始介绍线性代数中另外一个基本概念——行列式. 其实与矩阵类似,行列式也是作为简化表述多项式的一种工具,关于行列式的历史渊源,有如下的介绍. 在介绍逆矩阵的时候,我们曾提及二阶矩阵有一个基于矩 ...

  9. 《Linear Algebra and Its Applications》-chaper2-矩阵代数-分块矩阵

    分块矩阵的概念: 在矩阵的实际应用中,为了形式的更加简化我们将一个较大的矩阵的内部进行一定的划分,使之成为几个小矩阵,然后在表大矩阵的时候,矩阵的内部元素就用小矩阵代替. 进行了这一步简化,我们就要分 ...

随机推荐

  1. Masonry等比缩放

    第一种: CGFloat width = CGRectGetWidth([[UIScreen mainScreen] bounds]);         CGFloat aspectRatio = 1 ...

  2. Objective-C中的@dynamic(转)

    转自 http://blog.csdn.net/haishu_zheng/article/details/12873151 Objective-C中的@dynamic 一.@dynamic与@synt ...

  3. 转:探讨android更新UI的几种方法

    本文转自:http://www.cnblogs.com/wenjiang/p/3180324.html 作为IT新手,总以为只要有时间,有精力,什么东西都能做出来.这种念头我也有过,但很快就熄灭了,因 ...

  4. LINUX命令行操作

    Linux 命令行快捷键 7条回复 涉及在linux命令行下进行快速移动光标.命令编辑.编辑后执行历史命令.Bang(!)命令.控制命令等.让basher更有效率. 说明 Ctrl – k: 先按住 ...

  5. 【实习记】2014-08-15文档太少看着源码用cgicc+stl库之模板谓词函数对象

        总结1: 今天找到了昨天scanf的问题答案,scanf与printf一样的神奇而复杂,稍不留神,就会被坑.scanf函数在读入非空白符分割的多个字符串的解决方法是这个:/* 以 | 分割 * ...

  6. BOM 之 screen history

    /*    avaiHeight // 屏幕的像素高度减去系统部件高度之后的值    var ah = screen.availHeight;     alert(ah); */    /* avai ...

  7. fedora安装sublime text教程

    下载 http://pan.baidu.com/s/1eRkEegM 解压 终端中切换到下载文件的目录下,执行以下命令: sudo tar -jxvf sublime_text_3_build_308 ...

  8. 浏览器阻止window.open的解决方案

    先分析一下浏览器为什么会阻止window.open吧:用户主动去触发事件的浏览器不会阻止,什么是用户主动触发的呢?就是当用户去点击的一瞬间就弹出这种浏览器是不会阻止的,如果是通过setTimeout定 ...

  9. C#一个字符串的加密与解密

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.S ...

  10. MAC 安装Ruby On Rails

    MAC 安装Ruby On Rails 对于新入门的开发者,如何安装 Ruby, Ruby Gems 和 Rails 的运行环境可能会是个问题,本页主要介绍如何用一条靠谱的路子快速安装 Ruby 开发 ...