Spark 1.6+推出了以RPCEnv、RPCEndpoint、RPCEndpointRef为核心的新型架构下的RPC通信方式。其具体实现有Akka和Netty两种方式,Akka是基于Scala的Actor的分布式消息通信系统,Netty是由JBOSS提供的一个java开源框架。Netty提供异步的、事件驱动的网络应用程序框架和工具,用以快速开发高性能、高可靠性的网络服务器和客户端程序。

Rpc Environment(RpcEnv)是一个RpcEndpoints用于处理消息的环境,它管理着整个RpcEndpoints的声明周期:(1)根据name或uri注册endpoints(2)管理各种消息的处理(3)停止endpoints。RpcEnv必须通过工厂类RpcEnvFactory创建。

RpcEndpoint需要注册到RpcEnv,RpcEnv处理从RpcEndpointRef或远程节点发送过来的消息,然后把响应消息给RpcEndpoint。对于Rpc捕获到的异常消息,RpcEnv将会用RpcCallContext.sendFailure将失败消息发送给发送者,或者将没有发送者、‘NotSerializableException’等记录到日志中。同时,RpcEnv也提供了根据name或uri获取RpcEndpointRef的方法。

Rpc、RpcEndpoint、RpcEndpointRef三者关系

1.RpcEnv源码分析

1.根据RpcEndpoint返回RpcEndpointRef,具体实现在RpcEndpoint.self方法中,如果RpcEndpointRef不存在,将返回null

private[rpc] def endpointRef(endpoint: RpcEndpoint): RpcEndpointRef

2.根据RpcEndpoint的name注册到RpcEnv中并返回它的一个引用RpcEndpointRef

def setupEndpoint(name: String, endpoint: RpcEndpoint): RpcEndpointRef

3.获取RpcEndpointRef的方法

(1)通过url获取RpcEndpointRef

//通过url异步获取RpcEndpointRef

def asyncSetupEndpointRefByURI(uri: String): Future[RpcEndpointRef]

//通过url同步获取RpcEndpointRef,这是一个阻塞操作

def setupEndpointRefByURI(uri: String): RpcEndpointRef = {

defaultLookupTimeout.awaitResult(asyncSetupEndpointRefByURI(uri))}

(2)根据systemName、address、endpointName获取RpcEndpointRef,其实是将三者拼接为uri,根据uri获取

//异步获取

def asyncSetupEndpointRef(

systemName: String, address: RpcAddress, endpointName: String): Future[RpcEndpointRef] = {

asyncSetupEndpointRefByURI(uriOf(systemName, address, endpointName))}

//同步获取

def setupEndpointRef(

systemName: String, address: RpcAddress, endpointName: String): RpcEndpointRef = {

setupEndpointRefByURI(uriOf(systemName, address, endpointName))

}

4.根据RpcEndpointRef停止RpcEndpoint

def stop(endpoint: RpcEndpointRef): Unit

5.等待直到RpcEnv退出

def awaitTermination(): Unit

6.RpcEndpointRef需要RpcEnv来反序列化,所以当反序列化RpcEndpointRefs的任何object时,应该通过该方法来操作

def deserializeT: T

2.RpcEndpoint源码分析

RpcEndpoint定义了由消息触发的一些函数,onStart, receive and onStop的调用是顺序发生的。它的声明周期是constructor -> onStart -> receive* -> onStop。注意,receive能并发操作,如果你想要receive是线程安全的,请使用ThreadSafeRpcEndpoint,如果RpcEndpoint抛出错误,它的onError方法将会触发。它有51个实现子类,我们比较熟悉的是Master、Worker、ClientEndpoint等。

1.启动RpcEndpoint处理任何消息

def onStart(): Unit = {}

2.停止RpcEndpoint

def onStop(): Unit = {}

3.处理RpcEndpointRef.send或RpcCallContext.reply方法,如果收到不匹配的消息,将抛出SparkException

def receive: PartialFunction[Any, Unit] = {

case _ => throw new SparkException(self + " does not implement 'receive'")}

4.处理RpcEndpointRef.ask方法,如果不匹配消息,将抛出SparkException

def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {

case _ => context.sendFailure(new SparkException(self + " won't reply anything"))}

5.当处理消息发生异常时

def onError(cause: Throwable): Unit = {

throw cause}

6.当远程地址连接到当前的节点地址时触发

def onConnected(remoteAddress: RpcAddress): Unit = {

}

7.当远程地址连接断开时触发

def onDisconnected(remoteAddress: RpcAddress): Unit = {

}

8.当远程地址和当前节点的连接发生网络异常时触发

def onNetworkError(cause: Throwable, remoteAddress: RpcAddress): Unit = {

// By default, do nothing.

}

3.RpcEndpointRef源码分析

RpcEndpointRef是RpcEndpoint的一个远程引用,是线程安全的。它有两个实现子类:即AkkaRpcEndpointRef和NettyRpcEndpointRef。

1.发送单方面的异步消息

def send(message: Any): Unit

2.发送一个消息给RpcEndpoint.receiveAndReply并返回一个Future在指定的时间内接受响应,本方法值请求一次

def askT: ClassTag: Future[T]

3.发送消息给RpcEndpoint并在默认的超时内得到结果,否则抛出SparkException,注意,本方法是一个阻塞操作可能消耗时间,所以不要早消息循环中调用它

def askWithRetryT: ClassTag: T = askWithRetry(message, defaultAskTimeout)

最后,画图说明一下两者的消息传递的过程,RpcEndpointRef作为消息的主动者,RpcEndpoint作为消息的被动者

RpcEndpoint、RpcEndpointRef

【原】Spark Rpc通信源码分析的更多相关文章

  1. Spark RPC框架源码分析(一)简述

    Spark RPC系列: Spark RPC框架源码分析(一)运行时序 Spark RPC框架源码分析(二)运行时序 Spark RPC框架源码分析(三)运行时序 一. Spark rpc框架概述 S ...

  2. Spark RPC框架源码分析(二)RPC运行时序

    前情提要: Spark RPC框架源码分析(一)简述 一. Spark RPC概述 上一篇我们已经说明了Spark RPC框架的一个简单例子,Spark RPC相关的两个编程模型,Actor模型和Re ...

  3. Spark RPC框架源码分析(三)Spark心跳机制分析

    一.Spark心跳概述 前面两节中介绍了Spark RPC的基本知识,以及深入剖析了Spark RPC中一些源码的实现流程. 具体可以看这里: Spark RPC框架源码分析(二)运行时序 Spark ...

  4. Thrift笔记(三)--Thrift框架通信源码分析

    Thrift 客户端调用RPC的Demo public static void main(String[] args) throws Exception { TTransport transport ...

  5. 【原】Spark中Master源码分析(一)

    Master作为集群的Manager,对于集群的健壮运行发挥着十分重要的作用.下面,我们一起了解一下Master是听从Client(Leader)的号召,如何管理好Worker的吧. 1.家当(静态属 ...

  6. 【原】Spark中Client源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的 ...

  7. 【原】Spark中Master源码分析(二)

    继续上一篇的内容.上一篇的内容为: Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html 4.receive方法, ...

  8. 【原】 Spark中Worker源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html 4.receive方法, r ...

  9. Spark Scheduler模块源码分析之TaskScheduler和SchedulerBackend

    本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继 ...

随机推荐

  1. VC++添加工具栏

    VC添加工具栏 方法一:添加ICON图标 1. 新建一个基于对话框的项目:Test 2. 在类CTestDlg中, 添加两个变量: CToolBarCtrl m_ToolBar1; CImageLis ...

  2. poj 1818 ATP

    ATP 题意:足球锦标赛使用二分的策略,每次淘汰剩下人的一半,并且数据表明:排名相差k(include)之内的运动员,胜负难料,否则排名前的必定战胜排名后的:问给定n(n = 2x, x∈N, n & ...

  3. 解释型语言和编译型语言的不同以及Python如何运行

    计划写关于Python中如何实现属性管理.函数(或类方法)管理.类管理的几篇成系列的文章. 而这篇文章写在这个系列之前,希望对后面几篇文章的理解有所帮助. 老实说,我也是在网上搜索了一些资料才写的这篇 ...

  4. JavaScript原生错误及检测

    JavaScript代码在运行时可能产生的错误共有六种类型: 语法错误 类型错误 范围错误 eval错误 引用错误 URI错误 使用try-catch语句检测错误类型 try{ }catch(erro ...

  5. bzoj 1133: [POI2009]Kon dp

    1133: [POI2009]Kon Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 242  Solved: 81[Submit][Status][D ...

  6. LibLinear(SVM包)使用说明之(三)实践

    LibLinear(SVM包)使用说明之(三)实践 LibLinear(SVM包)使用说明之(三)实践 zouxy09@qq.com http://blog.csdn.net/zouxy09 我们在U ...

  7. uva 12654

    dp,用优先队列存,上个节点节点覆盖下来的长度: 不过还不是很明白: #include<cstdio> #include<queue> #include<algorith ...

  8. unity 嵌入 百度分享 与 游戏内购物 iap

    原地址:http://blog.csdn.net/u012085988/article/details/18268869 最近老板让在unity项目里实现分享与内购功能,还要ios和android两个 ...

  9. I2S和PCM

    http://blog.csdn.net/azloong/article/details/6536855

  10. 155. Min Stack

    题目: Design a stack that supports push, pop, top, and retrieving the minimum element in constant time ...