题意:给个矩形的面积a,和矩形的最小边长b,问有多少种矩形的方案(不能是正方形)

分析:a可以写成x,y,因为不能是正方形,所以设x<y,那么x<sqrt(a),y>sqrt(a)

所以找到所有小于sqrt(a)的因子,看有几个大于等于b的就是方案数

因子可以由数的唯一分解定理,求得

具体 : 先筛一遍1e6以内的素数,有线性筛,然后分解a,然后dfs找所有的小于sqrt(a)的因子,

由于前12个素数的乘积大于1e12了,所以这部分复杂度,大概是O(2^12)(一般还要略大,不过大不了多少,数组要开大)左右

可以用这个估计(因为是求小于sqrt(a)的,可以除以2,当然这是空间常数)

所以这部分复杂度是O(T*2^12)满的话(4000*4000)大概也就是几百万,这部分可以忽略不计

主要的复杂度在分解素数里,因为1e6里面大概有7w多素数,这部分复杂度(最坏的情况a是大素数),大概是4000*70000,可以卡过,由于不可能都是这种数据

所以还是可以过的

吐槽:然后我看了看网上的代码,都是先求出总的,然后暴力扫b减,结果居然过了,b是sqrt(a)的级别,是百万,4000*1e6,是4e9,TLE

出题人太良心,没有卡这种的QAQ,感觉略坑啊

#include <cstdio>
#include <iostream>
#include <ctime>
#include <vector>
#include <cmath>
#include <map>
#include <queue>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=1e6+;
const int INF=0x3f3f3f3f;
int cnt;
bool v[N];
LL prime[];
void getprime(){
for(int i=;i*i<=N-;++i)
if(!v[i])
for(int j=i*i;j<=N-;j+=i)
v[j]=;
for(int i=;i<=N-;++i)
if(!v[i])prime[++cnt]=i;
}
vector<LL>fac[];
int divisors[],tot;
LL k;
void dfs(int pos,LL res){
if(pos==fac[].size()){
divisors[++tot]=res;
return;
}
for(LL i=,now=;i<=fac[][pos];now*=fac[][pos],++i){
if(now*res>=k)break;
dfs(pos+,res*now);
}
}
int main()
{
getprime();
int cas=,T;
scanf("%d",&T);
while(T--){
printf("Case %d: ",++cas);
LL a,b;
scanf("%lld%lld",&a,&b);
k=sqrt(a);
if(k*k!=a)++k;
if(b>=k){
printf("0\n");
continue;
}
LL t=a;
fac[].clear(),fac[].clear();
for(int i=;i<=cnt&&prime[i]*prime[i]<=t;++i){
if(t%prime[i])continue;
int tmp=;
fac[].push_back(prime[i]);
while(t%prime[i]==)++tmp,t/=prime[i];
fac[].push_back(tmp);
}
if(t>){
fac[].push_back(t);
fac[].push_back();
}
tot=;
dfs(,);
int ans=;
for(int i=;i<=tot;++i)
if(divisors[i]>=b)++ans;
printf("%d\n",ans);
}
return ;
}

LightOJ 1341 Aladdin and the Flying Carpet 数学的更多相关文章

  1. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

  2. LightOJ - 1341 Aladdin and the Flying Carpet 唯一分解定理LightOJ 1220Mysterious Bacteria

    题意: ttt 组数据,第一个给定飞毯的面积为 sss,第二个是毯子的最短的边的长度大于等于这个数,毯子是矩形但不是正方形. 思路: 求出 sss 的所有因子,因为不可能是矩形,所以可以除以 222, ...

  3. LightOJ 1341 - Aladdin and the Flying Carpet

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1341 题意:给你地毯面积和最小可能边的长度,让你求有几种组合的可能. 题解:这题就厉害 ...

  4. LightOJ 1341 Aladdin and the Flying Carpet(唯一分解定理)

    http://lightoj.com/volume_showproblem.php?problem=1341 题意:给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. 思路 ...

  5. LightOJ 1341 - Aladdin and the Flying Carpet 基本因子分解

    http://www.lightoj.com/volume_showproblem.php?problem=1341 题意:给你长方形的面积a,边最小为b,问有几种情况. 思路:对a进行素因子分解,再 ...

  6. LightOJ 1341 Aladdin and the Flying Carpet【整数分解】

    题目链接: http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1341 题意: 给定一个数,将其拆分成两个数的乘 ...

  7. [LightOJ 1341] Aladdin and the Flying Carpet (算数基本定理(唯一分解定理))

    题目链接: https://vjudge.net/problem/LightOJ-1341 题目描述: 问有几种边长为整数的矩形面积等于a,且矩形的短边不小于b 算数基本定理的知识点:https:// ...

  8. LightOJ 1341 Aladdin and the Flying Carpet 算数基本定理

    题目大意:给出面积n,和最短边m,求能形成的矩形的个数(不能为正方形). 题目思路:根据算数基本定理有: 1.每个数n都能被分解为:n=p1^a1*p2^a2*^p3^a3……pn^an(p为素数); ...

  9. LightOJ 1341 Aladdin and the Flying Carpet(整数拆分定理)

    分析:题目并不难理解,就是一些细节上的优化需要我们注意,我在没有优化前跑了2000多MS,优化了一些细节后就是400多MS了,之前还TLE了好几次. 方法:将整数拆分为质因子以后,表达为这样的形式,e ...

随机推荐

  1. C# 链表操作

    关于链表操作,在C#当中微软已经提供了一个LinkedList<T>的数据结构,通过这个类提供的一系列方法就能够实现链表操作. 这里我提供一段代码,这是在论坛里面有人提问时给出的代码,它实 ...

  2. WinForm 图形报表控件

    http://wenku.baidu.com/link?url=hOCeHErshNOw6NScDG3Y6JjT1mD-A4xHhjthcHyrTgk5NmPRKf0eqeaee4LmKZX5jd7S ...

  3. linear-gradient 的“高能”用法

    首先,让我们来了解一下“linear-gradient”的基本用法: 说明:用线性渐变创建图像 语法: <linear-gradient> = linear-gradient([ [ &l ...

  4. SQL技术内幕四

    数据类型: sql server只接受两种数据类型 1. 普通字符 varchar char 用一个字节表示一个字符,表示英文 2.unicode   nchar nvarchar 用两个字节表示一个 ...

  5. 【10】了解Bootstrap栅格系统基础案例(5)

    这次我们来说下列排序: 通过使用 .col-md-push-* 和 .col-md-pull-* 类就可以很容易的改变列(column)的顺序. <!DOCTYPE html> <h ...

  6. 2014年度辛星html教程夏季版第五节

    如果读者是一位后台开发者,那么肯定会知道什么叫表单,这里我们就介绍一下前台如何使用表单,表单的使用也是我们编写网页的必须经历的一关,而且,表单也往往是我们网站的漏洞和弱点出现的地方. ******** ...

  7. jquery组件团购倒计时功能(转)

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  8. ECSHOP安装或使用中提示Strict Standards: Non-static method cls_image:

    随着ECSHOP的不断发展,越来越多的人成为了ECSHOP的忠实粉丝.由于每个人的服务器环境和配置都不完全相同,所以ECSHOP也接二连三的爆出了各种各样的错误信息.相信不少新手朋友在ECSHOP安装 ...

  9. DHTMLX 前端框架 建立你的一个应用程序 教程(十一)--添加/删除表格中的记录

    添加/删除表格中的记录 我们的最终功能是在表格中添加删除 我们通过单机工具栏上的按钮来实现添加删除 当我们单击添加按钮的时候, 表单中 第一行默认填写New contact 光标自动聚焦 当用户点击删 ...

  10. android usb host 读写USB设备

    自android3.1以后android增加了操作USB设备的API. 官网地址:http://developer.android.com/guide/topics/connectivity/usb/ ...