Description

You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one of the following forms:

CHANGE i v Change the weight of the ith edge to v
NEGATE a b Negate the weight of every edge on the path from a to b
QUERY a b Find the maximum weight of edges on the path from a to b

Input

The input contains multiple test cases. The first line of input contains an integer t (t ≤ 20), the number of test cases. Then follow the test cases.

Each test case is preceded by an empty line. The first nonempty line of its contains N (N ≤ 10,000). The next N − 1 lines each contains three integers a, b and c, describing an edge connecting nodes a and b with weight c. The edges are numbered in the order they appear in the input. Below them are the instructions, each sticking to the specification above. A lines with the word “DONE” ends the test case.

Output

For each “QUERY” instruction, output the result on a separate line.

Sample Input

1

3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE

Sample Output

1
3

Source

【分析】
好久没写了。
写一道练练手。
 /*
宋代苏轼
《南乡子·重九涵辉楼呈徐君猷》
霜降水痕收。浅碧鳞鳞露远洲。酒力渐消风力软,飕飕。破帽多情却恋头。
佳节若为酬。但把清尊断送秋。万事到头都是梦,休休。明日黄花蝶也愁。
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <utility>
#include <iomanip>
#include <string>
#include <cmath>
#include <queue>
#include <assert.h>
#include <map>
#include <ctime>
#include <cstdlib>
#include <stack>
#define LOCAL
const int INF = 0x3f3f3f3f;
const int maxn= + ;
const int maxnode = ;
const int maxm= * + ;
using namespace std;
struct Node{//权值线段树
int l, r;
int Max, Min;
bool neg;//取反标记
}tree[maxn * ];
struct Edge{
int u, v, w;
}edges[maxn];//输入的边 int n, fa[maxn], size[maxn];
int son[maxn], dep[maxn], top[maxn];
int pos[maxn], Time;
int M, head[maxn], next[maxm], to[maxm], w[maxm]; //第一次dfs
void dfs_1(int u){
size[u] = ;
son[u] = ;
for (int i = head[u]; i != -; i = next[i]){
int v = to[i];
if (v == fa[u]) continue;
dep[v] = dep[u] + ;
fa[v] = u;
dfs_1(v);
size[u] += size[v];
if (size[v] > size[son[u]]) son[u] = v;
}
return;
}
void dfs_2(int u, int top_node){
top[u] = top_node;
pos[u] = ++Time;//给他和他的父亲的边在线段树中的位置
//重边
if (son[u]) dfs_2(son[u], top_node);
//轻边
for (int i = head[u]; i != -; i = next[i]){
int v = to[i];
if (v == fa[u] || v == son[u]) continue;
dfs_2(v, v);
}
}
//建树
void build(int x, int l, int r){
tree[x].l = l;tree[x].r = r;
tree[x].Max = -INF;
tree[x].Min = INF;
tree[x].neg = ;
if (l == r) return; int mid = (l + r) >> ;
build(x << , l, mid);
build((x << ) | , mid + , r);
}
void update(int x){
tree[x].Max = max(tree[x << ].Max, tree[(x << ) | ].Max);
tree[x].Min = min(tree[x << ].Min, tree[(x << ) | ].Min);
return;
}
//标记下传
void pushdown(int x){
if (tree[x].l == tree[x].r) return; if (tree[x].neg){
int l = (x << ), r = l | ;
tree[l].neg ^= ;
tree[l].Min *= -;
tree[l].Max *= -;
swap(tree[l].Min, tree[l].Max); tree[r].neg ^= ;
tree[r].Min *= -;
tree[r].Max *= -;
swap(tree[r].Min, tree[r].Max); tree[x].neg = ;
}
}
//在线段树中修改l,r为val
void change2(int x, int l, int r, int val){
pushdown(x);
if (tree[x].l == l && tree[x].r == r){
if (val == INF){//取反操作,注意已经pushdown过了
tree[x].neg = ;
tree[x].Min *= -;
tree[x].Max *= -;
swap(tree[x].Min, tree[x].Max);
} else tree[x].Min = tree[x].Max = val;//更新val
return;
} int mid = (tree[x].l + tree[x].r) >> ;
if (r <= mid) change2(x << , l, r, val);
else if (l > mid) change2((x << ) | , l, r, val);
else{
change2(x << , l, mid, val);
change2((x << ) | , mid + , r, val);
}
update(x);
}
int query2(int x, int l, int r){
pushdown(x);
if (tree[x].l == l && tree[x].r == r) return tree[x].Max; int mid = (tree[x].l + tree[x].r) >> ;
if (r <= mid) return query2(x << , l, r);
else if (l > mid) return query2((x << ) | , l, r);
else return max(query2((x << ), l, mid), query2((x << ) | , mid + , r));
}
//树链剖分部分
void change(int x, int y, int v){
while (top[x] != top[y]){
//总是矮的往上爬..
//保证dep[top[x]] >= dep[top[y]]
if (dep[top[x]] < dep[top[y]]) swap(x, y); change2(, pos[top[x]], pos[x], v);
x = fa[top[x]];
} if (x == y) return;
if (dep[x] > dep[y]) swap(x, y);
change2(, pos[son[x]], pos[y], v);
}
int query(int x, int y){
int Ans = -INF;
while (top[x] != top[y]){
if (dep[top[x]] < dep[top[y]]) swap(x, y); Ans = max(Ans, query2(, pos[top[x]], pos[x]));
x = fa[top[x]];
}
if (x == y) return Ans;
if (dep[x] > dep[y]) swap(x, y);
Ans = max(Ans, query2(, pos[son[x]], pos[y]));
return Ans == -INF ? : Ans;
}
void work(){
while(){
char str[];
scanf("%s", str);
if(str[] == 'C'){
int x, v;
scanf("%d%d", &x, &v);
change2(, pos[edges[x].v], pos[edges[x].v], v);
}else if(str[] == 'N'){
int l, r;
scanf("%d%d", &l, &r);
change(l, r, INF);
}else if(str[] == 'Q'){//询问两点之间最大值
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", query(l, r));
}else break;
}
}
//加边
void addEdge(int u, int v, int c){
to[M] = v;
w[M] = c;
next[M] = head[u];
head[u] = M++;
}
void init(){
memset(head, -, sizeof(head));//邻接表初始化
memset(dep, , sizeof(dep));
M = Time = ;//总边数和时间
fa[] = size[] = ;
//加边
scanf("%d", &n);
for (int i = ; i < n; i++){
scanf("%d%d%d", &edges[i].u, &edges[i].v, &edges[i].w);
addEdge(edges[i].u, edges[i].v, edges[i].w);
addEdge(edges[i].v, edges[i].u, edges[i].w);
}
dfs_1();
dfs_2(, );
build(, , Time);
for (int i = ; i < n; i++){
int x = edges[i].u, y = edges[i].v;
//判断父亲
if (dep[x] > dep[y]) swap(edges[i].u, edges[i].v);
//u一定是父亲
change2(, pos[edges[i].v], pos[edges[i].v], edges[i].w);
}
} int main(){
int T; scanf("%d", &T);
while (T--){
init();
work();
}
//printf("%d\n", INF);
return ;
}

【POJ3237】【树链剖分】Tree的更多相关文章

  1. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  2. poj3237树链剖分边权+区间取负

    树链剖分+线段树lazy-tag在树链上操作时千万不要写错.. /* 树链剖分+线段树区间变负 */ #include<iostream> #include<cstring> ...

  3. poj3237 树链剖分 暴力

    NEGATE a,b 将a b间的线段取反,这题应该用线段树+成段更新.我成段更新写的挫了,试了暴力修改过了(数据水). 也是简单的题目.不过要注意点和边的区别. #include<queue& ...

  4. 【POJ3237】Tree(树链剖分)

    题意:在一棵N个节点,有边权的树上维护以下操作: 1:单边修改,将第X条边的边权修改成Y 2:区间取反,将点X与Y在树上路径中的所有边边权取反 3:区间询问最大值,询问X到Y树上路径中边权最大值 n& ...

  5. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  6. POJ3237 Tree 树链剖分 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...

  7. [POJ3237]Tree解题报告|树链剖分|边剖

    关于边剖 之前做的大多是点剖,其实转换到边剖非常简单. 我的做法是每个点的点权记录其到父亲节点的边的边权. 只要solve的时候不要把最上面的点记录在内就可以了. Tree Description Y ...

  8. POJ3237 Tree 树链剖分 边权

    POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...

  9. Cogs 1583. [POJ3237]树的维护 LCT,树链剖分

    题目:http://cojs.tk/cogs/problem/problem.php?pid=1583 1583. [POJ3237]树的维护 ★★★☆   输入文件:maintaintree.in  ...

随机推荐

  1. Unity 打包完太大

    打包完以后,看BuildLog,发现 Level 这一项数据很大,按照官方文档,这应该是很小的一项才对,但是我们的包中Level占据了80+M,20-30%,经过反复试验,发现是 Static Bat ...

  2. git入门超详细(转载)

    转自:http://www.cnblogs.com/tugenhua0707/p/4050072.html Git使用教程 一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. 二:SV ...

  3. HDOJ/HDU 1321 Reverse Text(倒序输出~)

    Problem Description In most languages, text is written from left to right. However, there are other ...

  4. Ado Recordset.open

    Recordset.open Recordset 对象的 Open 方法 允许用户向数据库发出请求,通过是运行一个 SQL命令.启动一个指定的数据表或调用一个指定的 Stored Procedure ...

  5. hdu 4620 搜索

    好苦逼,为啥数组开小了,不会runtime error,还得我WA了几个小时,我泪流满面. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4620 #i ...

  6. 【Lucene3.6.2入门系列】第15节_SolrJ高亮

    package com.jadyer.solrj; import java.util.ArrayList; import java.util.List; import java.util.Map; i ...

  7. 【转】jQuery列表拖动排列-jquery list dragsort插件参数和使用方法

    转自:http://www.itokit.com/2014/0820/75058.html 我们在编辑页面元素排序的时候,我推荐使用jquery插件:dragsort. dragsort官网地址:ht ...

  8. 数据库事务的ACID和BASE

    ACID versus BASE for database transactions解释了ACID和BASE的区别.如下: ACID: (关系数据库) Atomic: 原子性,一个事务要么全部成功,要 ...

  9. nandflash中oob、ecc分析

    1.为何需要分析? 最近一直接触这类驱动,如果对它的原理不懂的话,驱动调试会很麻烦!!!!!! 2.ecc? nand的纠错能力,目前有1位.4位和8位,也就是说在512字节中如果是4位的ecc那就可 ...

  10. JAVA学习第四十七课 — IO流(一):文件的读写

    输入流和输出流相对于内存 将外部设备的数据读取到内存中:输入 将内存中的数据写入外部设备中:输出 IO流经常使用基类 字节流的抽象基类:InputStream,OutputStream 字符的抽象基类 ...