BZOJ 2423 最长公共子序列
Description
Input
Output
Sample Input
BACBBD.
Sample Output
7
HINT
首先,求最长子序列就是一个经典的dp了。f[i][j]表示s1到第i位,s2到第j位的最长子序列,f[i][j]=max(f[i-1][j-1]+(s1[i]==s2[j]),f[i-1][j],f[i][j-1])。
麻烦的就是方案的转移,我们另g[i][j]表示s1到第i位,s2到第j位的最长子序列的方案数。考虑以下的几种情况:
1.s1[i]==s2[j],f[i][j]=f[i-1][j-1]+1。g[i][j]=g[i-1][j-1]+(f[i-1][j]==f[i][j])*g[i-1][j]+(f[i][j-1]==f[i][j])*g[i][j-1],三种情况互不包含(g[i-1][j-1]指s1[i]与s2[j]配对;若f[i-1][j]==f[i][j]的话,一定有s1[i-1]与s2[j]配对(否则f不会相等),累加g[i-1][j];同理g[i][j-1]指的是s1[i]与s2[j-1]配对),直接加即可。
2.否则的话,f[i][j]=max(f[i-1][j],f[i][j-1]),若两者相等,则g[i][j]=g[i-1][j]+g[i][j-1]-g[i-1][j-1],因为中间部分两者都计算了一遍,否则就加上大者即可。
由于O(n^2)的空间肯定是开不下的,所以我们要利用滚动数组。
#include<cstring>
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std; #define rhl (100000000)
#define maxn 5010
char s1[maxn],s2[maxn];
int f[][maxn],g[][maxn],n,m; inline void dp()
{
n = strlen(s1+),m = strlen(s2+);
s1[n--] = s2[m--] = ;
for (int i = ;i <= m;++i) g[][i] = ;
for (int i = ;i <= n;++i)
{
int p = i&,q = p^;
g[p][] = ;
for (int j = ;j <= m;++j)
{
g[p][j] = ;
if (s1[i] == s2[j])
{
f[p][j] = f[q][j-]+;
g[p][j] += g[q][j-];
if (f[q][j] == f[p][j]) g[p][j] += g[q][j];
if (f[p][j-] == f[p][j]) g[p][j] += g[p][j-];
}
else
{
f[p][j] = max(f[p][j-],f[q][j]);
if (f[p][j-] > f[q][j]) g[p][j] = g[p][j-];
else if (f[q][j] > f[p][j-]) g[p][j] = g[q][j];
else
{
g[p][j] = g[q][j]+g[p][j-];
if (f[q][j-] == f[p][j]) g[p][j] -= g[q][j-];
}
}
while (g[p][j] >= rhl) g[p][j] -= rhl;
while (g[p][j] < ) g[p][j] += rhl;
}
}
printf("%d\n%d",f[n&][m],g[n&][m]);
} int main()
{
freopen("2423.in","r",stdin);
freopen("2423.out","w",stdout);
scanf("%s%s",s1+,s2+);
dp();
fclose(stdin); fclose(stdout);
return ;
}
BZOJ 2423 最长公共子序列的更多相关文章
- bzoj:2423: [HAOI2010]最长公共子序列
Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0, ...
- bzoj 2423: [HAOI2010]最长公共子序列【dp+计数】
设f[i][j]为a序列前i个字符和b序列前j个字符的最长公共子序列,转移很好说就是f[i][j]=max(f[i-1][j],f[i][j-1],f[i-1][j-1]+(a[i]==b[j])) ...
- BZOJ 3304: [Shoi2005]带限制的最长公共子序列( LCS )
求个LCS, 只是有了限制, 多加一维表示匹配到z串的第几个, 然后用滚动数组 ------------------------------------------------------------ ...
- 【BZOJ2423】最长公共子序列(动态规划)
[BZOJ2423]最长公共子序列(动态规划) 题面 BZOJ 洛谷 题解 今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz. 对于如何\(O(n^ ...
- 【bzoj2423】最长公共子序列[HAOI2010](dp)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2423 题目大意:求两个字符串的最长公共子序列长度和最长公共子序列个数. 这道题的话,对于 ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- [Data Structure] LCSs——最长公共子序列和最长公共子串
1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
随机推荐
- Boost.Asio c++ 网络编程翻译(20)
异步服务端 这个图表是相当复杂的:从Boost.Asio出来你能够看到4个箭头指向on_accept.on_read,on_write和on_check_ping. 着也就意味着你永远不知道哪个异步调 ...
- Swift语言入门之旅
Swift语言入门之旅 学习一门新的计算机语言,传统来说都是从编写一个在屏幕上打印"Hello world"的程序開始的.那在 Swift,我们使用一句话来实现它: printl ...
- [转] npm install 本地安装与全局安装的区别
npm的包安装分为本地安装(local).全局安装(global)两种,从敲的命令行来看,差别只是有没有-g而已,比如 npm install grunt # 本地安装 npm install -g ...
- 关于css中伪类及伪元素的总结
css中的伪类和伪元素总是混淆,今天参考了很多资料,也查看了部分文档,现将伪类及伪元素总结如下: 一.由来: 伪类和伪元素的引入都是因为在文档树里有些信息无法被充分描述,比如CSS没有"段落 ...
- CSS盒子模型小剖析
前段时间刚刚从C/S过度到B/S,提到B/S就不能说CSS,而说起CSS又不能落下盒子模型.在CSS诞生的时候就有了盒子模型的概念,网页中大部分的元素都能构成一个盒子模型,.盒子模型无非就是描述的元素 ...
- Java中Date各种相关用法
Java中Date各种相关用法(一) 1.计算某一月份的最大天数 Java代码 Calendar time=Calendar.getInstance(); time.clear(); time.set ...
- Jquery 判断滚动条到达顶部或底部
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- (转)HTML表格边框的设置小技巧
对于很多初学HTML的人来说,表格<table>是最常用的标签了,但对于表格边框的控制,很多初学者却不甚其解. 对于很多初学HTML的人来说,表格<table>是最常用的标签了 ...
- Andoird - SQLite 数据库 基础教程
链接来源 http://www.tutorialspoint.com/android/android_sqlite_database.htm SQLite是一个开源的SQL数据库,这个数据库把数据存储 ...
- Node中Exports与module.export的使用与区别
最近在看<node开发实战详解>时有写疑问,所以自己就整理了一些资料.下面是node4.*的官方api文档(http://nodejs.cn/doc/node_4/modules.html ...