BZOJ 2423 最长公共子序列
Description
Input
Output
Sample Input
BACBBD.
Sample Output
7
HINT
首先,求最长子序列就是一个经典的dp了。f[i][j]表示s1到第i位,s2到第j位的最长子序列,f[i][j]=max(f[i-1][j-1]+(s1[i]==s2[j]),f[i-1][j],f[i][j-1])。
麻烦的就是方案的转移,我们另g[i][j]表示s1到第i位,s2到第j位的最长子序列的方案数。考虑以下的几种情况:
1.s1[i]==s2[j],f[i][j]=f[i-1][j-1]+1。g[i][j]=g[i-1][j-1]+(f[i-1][j]==f[i][j])*g[i-1][j]+(f[i][j-1]==f[i][j])*g[i][j-1],三种情况互不包含(g[i-1][j-1]指s1[i]与s2[j]配对;若f[i-1][j]==f[i][j]的话,一定有s1[i-1]与s2[j]配对(否则f不会相等),累加g[i-1][j];同理g[i][j-1]指的是s1[i]与s2[j-1]配对),直接加即可。
2.否则的话,f[i][j]=max(f[i-1][j],f[i][j-1]),若两者相等,则g[i][j]=g[i-1][j]+g[i][j-1]-g[i-1][j-1],因为中间部分两者都计算了一遍,否则就加上大者即可。
由于O(n^2)的空间肯定是开不下的,所以我们要利用滚动数组。
#include<cstring>
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std; #define rhl (100000000)
#define maxn 5010
char s1[maxn],s2[maxn];
int f[][maxn],g[][maxn],n,m; inline void dp()
{
n = strlen(s1+),m = strlen(s2+);
s1[n--] = s2[m--] = ;
for (int i = ;i <= m;++i) g[][i] = ;
for (int i = ;i <= n;++i)
{
int p = i&,q = p^;
g[p][] = ;
for (int j = ;j <= m;++j)
{
g[p][j] = ;
if (s1[i] == s2[j])
{
f[p][j] = f[q][j-]+;
g[p][j] += g[q][j-];
if (f[q][j] == f[p][j]) g[p][j] += g[q][j];
if (f[p][j-] == f[p][j]) g[p][j] += g[p][j-];
}
else
{
f[p][j] = max(f[p][j-],f[q][j]);
if (f[p][j-] > f[q][j]) g[p][j] = g[p][j-];
else if (f[q][j] > f[p][j-]) g[p][j] = g[q][j];
else
{
g[p][j] = g[q][j]+g[p][j-];
if (f[q][j-] == f[p][j]) g[p][j] -= g[q][j-];
}
}
while (g[p][j] >= rhl) g[p][j] -= rhl;
while (g[p][j] < ) g[p][j] += rhl;
}
}
printf("%d\n%d",f[n&][m],g[n&][m]);
} int main()
{
freopen("2423.in","r",stdin);
freopen("2423.out","w",stdout);
scanf("%s%s",s1+,s2+);
dp();
fclose(stdin); fclose(stdout);
return ;
}
BZOJ 2423 最长公共子序列的更多相关文章
- bzoj:2423: [HAOI2010]最长公共子序列
Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0, ...
- bzoj 2423: [HAOI2010]最长公共子序列【dp+计数】
设f[i][j]为a序列前i个字符和b序列前j个字符的最长公共子序列,转移很好说就是f[i][j]=max(f[i-1][j],f[i][j-1],f[i-1][j-1]+(a[i]==b[j])) ...
- BZOJ 3304: [Shoi2005]带限制的最长公共子序列( LCS )
求个LCS, 只是有了限制, 多加一维表示匹配到z串的第几个, 然后用滚动数组 ------------------------------------------------------------ ...
- 【BZOJ2423】最长公共子序列(动态规划)
[BZOJ2423]最长公共子序列(动态规划) 题面 BZOJ 洛谷 题解 今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz. 对于如何\(O(n^ ...
- 【bzoj2423】最长公共子序列[HAOI2010](dp)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2423 题目大意:求两个字符串的最长公共子序列长度和最长公共子序列个数. 这道题的话,对于 ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- [Data Structure] LCSs——最长公共子序列和最长公共子串
1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
随机推荐
- Asp.net网站后台代码不能访问-iis部署
最近自己写了点东西,部署的时候确发生了点问题,后台代码访问不了,错误为:由于扩展配置问题而无法提供您请求的页面.如果该页面是脚本,请添加处理程序. 错误详细提示: HTTP 错误 404.3 - ...
- 检查Oracle 中死事务的语句
SQL> SELECT KTUXEUSN, KTUXESLT, KTUXESQN, /* Transaction ID */ 2 KTUXESTA Status, KTUXECFL Flags ...
- clock_gettime测代码运行时间
//函数原型: // long clock_gettime (clockid_t which_clock, struct timespec *tp); //参数列表: // CLOCK_REALTIM ...
- 在GDB 中如何记录 instruction-history and function-call-history
(EDIT: per the first answer below the current "trick" seems to be using an Atom processor. ...
- phpnow安装教程
点评:搭建 PHP 其实不很难,只是有点繁琐.要是自己搭建一次 PHP + MySQL 环境很是费时.更糟的是,很多新手在配置 PHP 时常常出现这样那样的问题.诸如 mysql 扩展.zend 安装 ...
- [转] npm install 本地安装与全局安装的区别
npm的包安装分为本地安装(local).全局安装(global)两种,从敲的命令行来看,差别只是有没有-g而已,比如 npm install grunt # 本地安装 npm install -g ...
- Android应用发布后的统计——百度移动统计的应用
一个App发布到各个渠道之后,我们需要采集不同渠道的一些信息,比如app在运行过程中产生的一些异常信息,app在各个android版本的分布,以及各个app版本的分布,各渠道的用户数,用户忠诚度等等信 ...
- 学习java随笔第一篇:搭建java平台(java se)
电脑系统:windows8 在这里介绍一下java平台的3个版本: Java SE--Java Standard Edition,Java的标准版,主要用于桌面级的应用和数据库开发. Java EE- ...
- 那些年,我们一起学WCF--(8)Single实例行为
Single实例行为,类似于单件设计模式,所有可以客户端共享一个服务实例,这个服务实例是一个全局变量,该实例第一次被调用的时候初始化,到服务器关闭的时候停止. 设置服务为Single实例行为,只要设置 ...
- [转帖]vivado & VS2013工具
来源:http://bbs.csdn.net/topics/380057699 添加OpenCV库后,MFC在Debug模式下调试,提示应用程序无法正常启动(0xc000007b). 解决方法:在环境 ...