BM25算法,通常用来作搜索相关性平分。一句话概况其主要思想:对Query进行语素解析,生成语素qi;然后,对于每个搜索结果D,计算每个语素qi与D的相关性得分,最后,将qi相对于D的相关性得分进行加权求和,从而得到Query与D的相关性得分。

BM25算法的一般性公式如下:

其中,Q表示Query,qi表示Q解析之后的一个语素(对中文而言,我们可以把对Query的分词作为语素分析,每个词看成语素qi。);d表示一个搜索结果文档;Wi表示语素qi的权重;R(qi,d)表示语素qi与文档d的相关性得分。

下面我们来看如何定义Wi。判断一个词与一个文档的相关性的权重,方法有多种,较常用的是IDF。这里以IDF为例,公式如下:

其中,N为索引中的全部文档数,n(qi)为包含了qi的文档数。

根据IDF的定义可以看出,对于给定的文档集合,包含了qi的文档数越多,qi的权重则越低。也就是说,当很多文档都包含了qi时,qi的区分度就不高,因此使用qi来判断相关性时的重要度就较低。

我们再来看语素qi与文档d的相关性得分R(qi,d)。首先来看BM25中相关性得分的一般形式:

其中,k1,k2,b为调节因子,通常根据经验设置,一般k1=2,b=0.75;fi为qi在d中的出现频率,qfi为qi在Query中的出现频率。dl为文档d的长度,avgdl为所有文档的平均长度。由于绝大部分情况下,qi在Query中只会出现一次,即qfi=1,因此公式可以简化为:

从K的定义中可以看到,参数b的作用是调整文档长度对相关性影响的大小。b越大,文档长度的对相关性得分的影响越大,反之越小。而文档的相对长度越长,K值将越大,则相关性得分会越小。这可以理解为,当文档较长时,包含qi的机会越大,因此,同等fi的情况下,长文档与qi的相关性应该比短文档与qi的相关性弱。

综上,BM25算法的相关性得分公式可总结为:

从BM25的公式可以看到,通过使用不同的语素分析方法、语素权重判定方法,以及语素与文档的相关性判定方法,我们可以衍生出不同的搜索相关性得分计算方法,这就为我们设计算法提供了较大的灵活性。

原文地址:http://ipie.blogbus.com/logs/104136815.html

bm25的更多相关文章

  1. BM25相关度打分公式

    BM25算法是一种常见用来做相关度打分的公式,思路比较简单,主要就是计算一个query里面所有词和文档的相关度,然后在把分数做累加操作,而每个词的相关度分数主要还是受到tf/idf的影响.公式如下: ...

  2. 概率检索模型及BM25

    概率排序原理 以往的向量空间模型是将query和文档使用向量表示然后计算其内容相似性来进行相关性估计的,而概率检索模型是一种直接对用户需求进行相关性的建模方法,一个query进来,将所有的文档分为两类 ...

  3. BM25和Lucene Default Similarity比较 (原文标题:BM25 vs Lucene Default Similarity)

    原文链接: https://www.elastic.co/blog/found-bm-vs-lucene-default-similarity 原文 By Konrad Beiske 翻译 By 高家 ...

  4. 文本相似度 — TF-IDF和BM25算法

    1,$TF-IDF$算法 $TF$是指归一化后的词频,$IDF$是指逆文档频率.给定一个文档集合$D$,有$d_1, d_2, d_3, ......, d_n \in D$.文档集合总共包含$m$个 ...

  5. 文本相似度-BM25算法

    BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms app ...

  6. 概率检索模型:BIM+BM25+BM25F

    1. 概率排序原理 以往的向量空间模型是将query和文档使用向量表示然后计算其内容相似性来进行相关性估计的,而概率检索模型是一种直接对用户需求进行相关性的建模方法,一个query进来,将所有的文档分 ...

  7. BM25 调参调研

    1. 搜索 ES 计算文本相似度用的 BM25,参数默认,不适合电商场景,可调整 BM25 参数使其适用于电商短文本场景 2. k1.b.tf.L.tfScore 的关系如下图红框内所示(注:这里的 ...

  8. Solr相似度算法二:Okapi BM25

    地址:https://en.wikipedia.org/wiki/Okapi_BM25   In information retrieval, Okapi BM25 (BM stands for Be ...

  9. 相关度算法BM25

    BM25算法,通常用来作搜索相关性平分.一句话概况其主要思想:对Query进行语素解析,生成语素qi:然后,对于每个搜索结果D,计算每个语素qi与D的相关性得分,最后,将qi相对于D的相关性得分进行加 ...

随机推荐

  1. springboot 详细配置2

    # =================================================================== # COMMON SPRING BOOT PROPERTIE ...

  2. Wbemtest查询

    运行wbemtest,打开后连接命名空间,默认为“root\cimv2”,可以连接到”IIS管理命名空间(此为Windows Server 2008 R2)“ 查看该命名空间下所有可用的类:单击“枚举 ...

  3. 删除已分配IP的静态IP地址池

    如果静态IP地址池已经分配了IP,则无法直接将其静态IP地址池删除,会提示出错:“已经有IP被分配,需要先将其回收,再删除” 如下: 查看IP地址池: Get-SCStaticIPAddressPoo ...

  4. 路冉的JavaScript学习笔记-2015年2月5日

    1.为Js原始值创建临时对象,并进行属性引用 var s="text"; s.len=4;//这里Js调用new String(s)的方法创建了一个临时对象,用来属性引用 cons ...

  5. JavaScript实现竖直文本滚动

    一.HTML代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://ww ...

  6. [React ] React Fundamentals: Component Lifecycle - Mounting Usage

    The previous lesson introduced the React component lifecycle mounting and unmounting. In this lesson ...

  7. Python重写C语言程序100例--Part1

    ''' [程序1] 题目:有1.2.3.4个数字,能组成多少个互不同样且无反复数字的三位数?都是多少? 1.程序分析:可填在百位.十位.个位的数字都是1.2.3.4.组成全部的排列后再去 掉不满足条件 ...

  8. Nginx下载服务生产服务器调优

    一.内存调优 内核关于内存的选项都在/proc/sys/vm目录下.   1.pdflush,用于回写内存中的脏数据到硬盘.可以通过 /proc/sys/vm/vm.dirty_background_ ...

  9. APUE(1)——UNIX基本概念

    1.OS——操作系统是管理硬件资源的软件,也称作内核.与此同时,操作系统还为其他程序提供一系列的服务,比如执行程序.打开文件.读文件等等. 2.Kernel——内核对外提供一系列的系统调用,而一些库又 ...

  10. react环境搭建

    react-webpack文件夹是开发目录,在此目录下执行命令,假设你已经正确安装了 nodejs 一:参照教程搭建环境 https://github.com/newtriks/generator-r ...