题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2134

题解:因为每个答案之间是互不影响的,所以我们可以挨个计算。

假设当前在做 i 题目,如果a[i+1]>=a[i],那么我们只需要让i+1题目的答案是i的答案即可,ans+=1/a[i+1]

否则 i 题目的答案必须在1--a[i+1],所以ans+=a[i+1]/a[i]*1/a[i+1]=1/a[i]

换句话说 ans+=min(1/a[i+1],1/a[i])

代码:

 #include<cstdio>

 #include<cstdlib>

 #include<cmath>

 #include<cstring>

 #include<algorithm>

 #include<iostream>

 #include<vector>

 #include<map>

 #include<set>

 #include<queue>

 #include<string>

 #define inf 1000000000

 #define maxn 10000000+5

 #define maxm 500+100

 #define eps 1e-10

 #define ll long long

 #define pa pair<int,int>

 #define for0(i,n) for(int i=0;i<=(n);i++)

 #define for1(i,n) for(int i=1;i<=(n);i++)

 #define for2(i,x,y) for(int i=(x);i<=(y);i++)

 #define for3(i,x,y) for(int i=(x);i>=(y);i--)

 #define mod 100000001

 using namespace std;

 inline ll read()

 {

     ll x=,f=;char ch=getchar();

     while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}

     while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}

     return x*f;

 }
ll n,a,b,c,d[maxn]; int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();a=read();b=read();c=read();d[]=read();
for2(i,,n)d[i]=(d[i-]*a+b)%mod;
for1(i,n)d[i]=(d[i]%c)+;d[n+]=d[];
double ans=;
for1(i,n)
if(d[i+]>=d[i])ans+=1.0/(double)d[i+];
else ans+=1.0/(double)d[i];
printf("%.3f\n",ans); return ; }

BZOJ2134: 单选错位的更多相关文章

  1. bzoj2134单选错位

    bzoj2134单选错位 题意: 试卷上n道选择题,每道分别有ai个选项.某人全做对了,但第i道题的答案写在了第i+1道题的位置,第n道题答案写在第1题的位置.求期望能对几道.n≤10000000 题 ...

  2. BZOJ2134——单选错位

    1.题意:这就是说考试的时候抄串了一位能对几个(雾) 2.分析:这是一个期望问题,期望就是平均,E(a+b)=E(a)+E(b),所以我们直接算出每个点能对几个就好,那么就是1/max(a[i],a[ ...

  3. bzoj2134: 单选错位(trie)

    预处理前后缀异或和,用trie得到前后缀最大答案,枚举中间点把左右两边加起来就是当前中间点的最大答案了...这个操作没见过,比较有意思,记录一下 #include<iostream> #i ...

  4. BZOJ2134: 单选错位(期望乱搞)

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1101  Solved: 851[Submit][Status][Discuss] Descripti ...

  5. BZOJ2134 luoguP1297 [国家集训队]单选错位

    单选错位 [问题描述] gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,a ...

  6. BZOJ 2134: 单选错位( 期望 )

    第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...

  7. BZOJ_2134_单选错位——期望DP

    BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P( ...

  8. P1297 [国家集训队]单选错位(期望)

    P1297 [国家集训队]单选错位 期望入门 我们考虑涂到第$i$道题时的情况 此时题$i$答案有$a[i]$种,我们可能涂$a[i+1]$种 分类讨论: 1.$a[i]>=a[i+1]$: 可 ...

  9. Luogu P1297 [国家集训队]单选错位

    P1297 [国家集训队]单选错位 题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上 ...

随机推荐

  1. Android 5.0 新特性

    Material Design Material Design简介 Material Design是谷歌新的设计语言,谷歌希望寄由此来统一各种平台上的用户体验,Material Design的特点是干 ...

  2. PHP 根据值查找键名

    array_search (PHP 4 >= 4.0.5, PHP 5) mixed array_search ( mixed $needle , array $haystack [, bool ...

  3. AngularJs的UI组件ui-Bootstrap-Tooltip

    完整案例,参考http://www.cnblogs.com/pilixiami/p/5661600.html <!DOCTYPE html> <html ng-app="u ...

  4. This 在 C# 中的含义

    这涉及到c# 中的oo思想,其实不管在c# 或其他编码语言中,很多抽象的概念当你项目经验多了,自然而然就会对这些东西理解的更透彻点,更加具象. 这里有一些面向对象编程的概念需要说明:类(Class)的 ...

  5. Exercise DS

    #include <iostream> using namespace std; typedef struct Node { Node *next; int data; }Node, *L ...

  6. (转)JSP中四种传递参数的方法:

    1.form表单 2.request.setAttribute();和request.getAttribute(); 3.超链接:<a herf="index.jsp"?a= ...

  7. Setup VSFTPD Server with Virtual Users On CentOS, RHEL, Scientific Linux 6.5/6.4/6.3

    We have already shown you How to Setup VSFTPD Server on CentOS 6.5/6.4 in our previous article. In t ...

  8. StandardServiceRegistryBuilder

    org.hibernate.boot.registry.StandardServiceRegistryBuilderhibernate4.3 Configuration cfg = new Confi ...

  9. MyEclipse使用经验总结

    0.快捷键 ================================================================================ 编辑: Ctrl+Shif ...

  10. PKM(personal knowledge management)

    内化 一般含义 一般上,当涉及道德行为时,内化是巩固和植入某人信念.态度和价值的长期过程,而这一过程的实现牵扯到精神分析或行为方法的慎重使用. 当改变道德行为时,一组新的信念.态度和价值代替或适应于所 ...