朴素贝叶斯文本分类java实现
package com.data.ml.classify; import java.io.File;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import java.util.regex.Matcher;
import java.util.regex.Pattern; import com.data.util.IoUtil; public class NativeBayes {
/**
* 默认频率
*/
private double defaultFreq = 0.1; /**
* 训练数据的比例
*/
private Double trainingPercent = 0.8; private Map<String, List<String>> files_all = new HashMap<String, List<String>>(); private Map<String, List<String>> files_train = new HashMap<String, List<String>>(); private Map<String, List<String>> files_test = new HashMap<String, List<String>>(); public NativeBayes() { } /**
* 每个分类的频率
*/
private Map<String, Integer> classFreq = new HashMap<String, Integer>(); private Map<String, Double> ClassProb = new HashMap<String, Double>(); /**
* 特征总数
*/
private Set<String> WordDict = new HashSet<String>(); private Map<String, Map<String, Integer>> classFeaFreq = new HashMap<String, Map<String, Integer>>(); private Map<String, Map<String, Double>> ClassFeaProb = new HashMap<String, Map<String, Double>>(); private Map<String, Double> ClassDefaultProb = new HashMap<String, Double>(); /**
* 计算准确率
* @param reallist 真实类别
* @param pridlist 预测类别
*/
public void Evaluate(List<String> reallist, List<String> pridlist){
double correctNum = 0.0;
for (int i = 0; i < reallist.size(); i++) {
if(reallist.get(i) == pridlist.get(i)){
correctNum += 1;
}
}
double accuracy = correctNum / reallist.size();
System.out.println("准确率为:" + accuracy);
} /**
* 计算精确率和召回率
* @param reallist
* @param pridlist
* @param classname
*/
public void CalPreRec(List<String> reallist, List<String> pridlist, String classname){
double correctNum = 0.0;
double allNum = 0.0;//测试数据中,某个分类的文章总数
double preNum = 0.0;//测试数据中,预测为该分类的文章总数 for (int i = 0; i < reallist.size(); i++) {
if(reallist.get(i) == classname){
allNum += 1;
if(reallist.get(i) == pridlist.get(i)){
correctNum += 1;
}
}
if(pridlist.get(i) == classname){
preNum += 1;
}
}
System.out.println(classname + " 精确率(跟预测分类比较):" + correctNum / preNum + " 召回率(跟真实分类比较):" + correctNum / allNum);
} /**
* 用模型进行预测
*/
public void PredictTestData() {
List<String> reallist=new ArrayList<String>();
List<String> pridlist=new ArrayList<String>(); for (Entry<String, List<String>> entry : files_test.entrySet()) {
String realclassname = entry.getKey();
List<String> files = entry.getValue(); for (String file : files) {
reallist.add(realclassname); List<String> classnamelist=new ArrayList<String>();
List<Double> scorelist=new ArrayList<Double>();
for (Entry<String, Double> entry_1 : ClassProb.entrySet()) {
String classname = entry_1.getKey();
//先验概率
Double score = Math.log(entry_1.getValue()); String[] words = IoUtil.readFromFile(new File(file)).split(" ");
for (String word : words) {
if(!WordDict.contains(word)){
continue;
} if(ClassFeaProb.get(classname).containsKey(word)){
score += Math.log(ClassFeaProb.get(classname).get(word));
}else{
score += Math.log(ClassDefaultProb.get(classname));
}
} classnamelist.add(classname);
scorelist.add(score);
} Double maxProb = Collections.max(scorelist);
int idx = scorelist.indexOf(maxProb);
pridlist.add(classnamelist.get(idx));
}
} Evaluate(reallist, pridlist); for (String cname : files_test.keySet()) {
CalPreRec(reallist, pridlist, cname);
} } /**
* 模型训练
*/
public void createModel() {
double sum = 0.0;
for (Entry<String, Integer> entry : classFreq.entrySet()) {
sum+=entry.getValue();
}
for (Entry<String, Integer> entry : classFreq.entrySet()) {
ClassProb.put(entry.getKey(), entry.getValue()/sum);
} for (Entry<String, Map<String, Integer>> entry : classFeaFreq.entrySet()) {
sum = 0.0;
String classname = entry.getKey();
for (Entry<String, Integer> entry_1 : entry.getValue().entrySet()){
sum += entry_1.getValue();
}
double newsum = sum + WordDict.size()*defaultFreq; Map<String, Double> feaProb = new HashMap<String, Double>();
ClassFeaProb.put(classname, feaProb); for (Entry<String, Integer> entry_1 : entry.getValue().entrySet()){
String word = entry_1.getKey();
feaProb.put(word, (entry_1.getValue() +defaultFreq) /newsum);
}
ClassDefaultProb.put(classname, defaultFreq/newsum);
}
} /**
* 加载训练数据
*/
public void loadTrainData(){
for (Entry<String, List<String>> entry : files_train.entrySet()) {
String classname = entry.getKey();
List<String> docs = entry.getValue(); classFreq.put(classname, docs.size()); Map<String, Integer> feaFreq = new HashMap<String, Integer>();
classFeaFreq.put(classname, feaFreq); for (String doc : docs) {
String[] words = IoUtil.readFromFile(new File(doc)).split(" ");
for (String word : words) { WordDict.add(word); if(feaFreq.containsKey(word)){
int num = feaFreq.get(word) + 1;
feaFreq.put(word, num);
}else{
feaFreq.put(word, 1);
}
}
} }
System.out.println(classFreq.size()+" 分类, " + WordDict.size()+" 特征词");
} /**
* 将数据分为训练数据和测试数据
*
* @param dataDir
*/
public void splitData(String dataDir) {
// 用文件名区分类别
Pattern pat = Pattern.compile("\\d+([a-z]+?)\\.");
dataDir = "testdata/allfiles";
File f = new File(dataDir);
File[] files = f.listFiles();
for (File file : files) {
String fname = file.getName();
Matcher m = pat.matcher(fname);
if (m.find()) {
String cname = m.group(1);
if (files_all.containsKey(cname)) {
files_all.get(cname).add(file.toString());
} else {
List<String> tmp = new ArrayList<String>();
tmp.add(file.toString());
files_all.put(cname, tmp);
}
} else {
System.out.println("err: " + file);
}
} System.out.println("统计数据:");
for (Entry<String, List<String>> entry : files_all.entrySet()) {
String cname = entry.getKey();
List<String> value = entry.getValue();
// System.out.println(cname + " : " + value.size()); List<String> train = new ArrayList<String>();
List<String> test = new ArrayList<String>(); for (String str : value) {
if (Math.random() <= trainingPercent) {// 80%用来训练 , 20%测试
train.add(str);
} else {
test.add(str);
}
} files_train.put(cname, train);
files_test.put(cname, test);
} System.out.println("所有文件数:");
printStatistics(files_all);
System.out.println("训练文件数:");
printStatistics(files_train);
System.out.println("测试文件数:");
printStatistics(files_test); } /**
* 打印统计信息
*
* @param m
*/
public void printStatistics(Map<String, List<String>> m) {
for (Entry<String, List<String>> entry : m.entrySet()) {
String cname = entry.getKey();
List<String> value = entry.getValue();
System.out.println(cname + " : " + value.size());
}
System.out.println("--------------------------------");
} public static void main(String[] args) {
NativeBayes bayes = new NativeBayes();
bayes.splitData(null);
bayes.loadTrainData();
bayes.createModel();
bayes.PredictTestData(); } } 所有文件数:
sports : 1018
auto : 1020
business : 1028
--------------------------------
训练文件数:
sports : 791
auto : 812
business : 808
--------------------------------
测试文件数:
sports : 227
auto : 208
business : 220
--------------------------------
3 分类, 39613 特征词
准确率为:0.9801526717557252
sports 精确率(跟预测分类比较):0.9956140350877193 召回率(跟真实分类比较):1.0
auto 精确率(跟预测分类比较):0.9579439252336449 召回率(跟真实分类比较):0.9855769230769231
business 精确率(跟预测分类比较):0.9859154929577465 召回率(跟真实分类比较):0.9545454545454546 统计数据:
所有文件数:
sports : 1018
auto : 1020
business : 1028
--------------------------------
训练文件数:
sports : 827
auto : 833
business : 825
--------------------------------
测试文件数:
sports : 191
auto : 187
business : 203
--------------------------------
3 分类, 39907 特征词
准确率为:0.9759036144578314
sports 精确率(跟预测分类比较):0.9894736842105263 召回率(跟真实分类比较):0.9842931937172775
auto 精确率(跟预测分类比较):0.9836956521739131 召回率(跟真实分类比较):0.9679144385026738
business 精确率(跟预测分类比较):0.9565217391304348 召回率(跟真实分类比较):0.9753694581280788
朴素贝叶斯文本分类java实现的更多相关文章
- Mahout朴素贝叶斯文本分类
Mahout朴素贝叶斯文本分类算法 Mahout贝叶斯分类器按照官方的说法,是按照<Tackling the PoorAssumptions of Naive Bayes Text Classi ...
- 朴素贝叶斯文本分类-在《红楼梦》作者鉴别的应用上(python实现)
朴素贝叶斯算法简单.高效.接下来我们来介绍其如何应用在<红楼梦>作者的鉴别上. 第一步,当然是先得有文本数据,我在网上随便下载了一个txt(当时急着交初稿...).分类肯定是要一个回合一个 ...
- 朴素贝叶斯文本分类(python代码实现)
朴素贝叶斯(naive bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法. 优点:在数据较少的情况下仍然有效,可以处理多分类问题. 缺点:对入输入数据的准备方式较为敏感. 使用数据类型:标称 ...
- 朴素贝叶斯文本分类实现 python cherry分类器
贝叶斯模型在机器学习以及人工智能中都有出现,cherry分类器使用了朴素贝叶斯模型算法,经过简单的优化,使用1000个训练数据就能得到97.5%的准确率.虽然现在主流的框架都带有朴素贝叶斯模型算法,大 ...
- 详解使用EM算法的半监督学习方法应用于朴素贝叶斯文本分类
1.前言 对大量需要分类的文本数据进行标记是一项繁琐.耗时的任务,而真实世界中,如互联网上存在大量的未标注的数据,获取这些是容易和廉价的.在下面的内容中,我们介绍使用半监督学习和EM算法,充分结合大量 ...
- 利用朴素贝叶斯算法进行分类-Java代码实现
http://www.crocro.cn/post/286.html 利用朴素贝叶斯算法进行分类-Java代码实现 鳄鱼 3个月前 (12-14) 分类:机器学习 阅读(44) 评论(0) ...
- 朴素贝叶斯算法分析及java 实现
1. 先引入一个简单的例子 出处:http://www.ruanyifeng.com/blog/2013/12/naive_bayes_classifier.html 一.病人分类的例子 让我从一个例 ...
- Naive Bayes(朴素贝叶斯算法)[分类算法]
Naïve Bayes(朴素贝叶斯)分类算法的实现 (1) 简介: (2) 算法描述: (3) <?php /* *Naive Bayes朴素贝叶斯算法(分类算法的实现) */ /* *把. ...
- 芝麻HTTP:记scikit-learn贝叶斯文本分类的坑
基本步骤: 1.训练素材分类: 我是参考官方的目录结构: 每个目录中放对应的文本,一个txt文件一篇对应的文章:就像下面这样 需要注意的是所有素材比例请保持在相同的比例(根据训练结果酌情调整.不可比例 ...
随机推荐
- (转)CentOS 6.5下Redis安装详细步骤
Redis简介:Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发工作 ...
- linux版本的区分
linux每个版本有好几种方式,刚学习的时候还不明白,了解了一下终于知道了 如下,以CentOS为例 1.CentOS系统镜像有两个,安装系统只用到第一个镜像即CentOS-6.x-i386-bin- ...
- 关于Git里程碑
里程碑即Tag,是人为对提交进行的命名.这和Git的ID是否太长无关.使用任何数字版本号无论长短, 都没有使用一个直观的表意的字符串来的方便.例如:用里程碑名称"v2.1"对应软件 ...
- The Shapes of CSS
#square { width: 100px; height: 100px; background: red; } #rectangle { width: 200px; height: 100px; ...
- java web项目中classes文件夹下的class和WEB-INF/lib中jar里的class文件加载顺序
如果是发布到weblogic的话,可以在WebContent\WEB-INF\weblogic.xml里面配置.参考配置如下:<?xml version="1.0" enco ...
- Python(2.7.6) 函数对象与闭包
在 Python 中,一切皆对象.函数也是对象,它可以赋值给其他变量,也可以当作参数传递. lambda 表达式可以创建函数对象,在 Python 中,lambda 表达式的函数体只能有唯一的一条语句 ...
- nopCommerce添加支付插件
之前完成了nopCommerce和汉化以及配置,今天继续对nopCommerce的研究,为了能够完成购物,我们就要将伟大的支付宝添加至其中了.支付宝插件下载 将Nop.Plugin.Payments. ...
- gwt-问题解决
最近在看gwt,写了个demo,但是总是出问题,困扰了好几天,后台也没报错,但就是加载不出来 第一次编译以后是可以的,但是改了代码后就不行了,后台也没报错,google了好长时间也没出来. 于是换了个 ...
- MySQL类型属性Unsigned与ZeroFill
1. Unsigned 就是将数字类型无符号化. int的类型范围是-2147483648~2147483647, int unsigned的类型范围是0~4294967295 Unsigned也可能 ...
- Ext.Net学习笔记15:Ext.Net GridPanel 汇总(Summary)用法
Ext.Net学习笔记15:Ext.Net GridPanel 汇总(Summary)用法 Summary的用法和Group一样简单,分为两步: 启用Summary功能 在Feature标签内,添加如 ...