MP算法和OMP算法及其思想
主要介绍MP(Matching Pursuits)算法和OMP(Orthogonal Matching Pursuit)算法[1],这两个算法尽管在90年代初就提出来了,但作为经典的算法,国内文献(可能有我没有搜索到)都仅描写叙述了算法步骤和简单的应用,并未对其进行详尽的分析,国外的文献还是分析的非常透彻,所以我结合自己的理解,来分析一下写到博客里,算作笔记。
1. 信号的稀疏表示(sparse representation of signals)
给定一个过完备字典矩阵,当中它的每列表示一种原型信号的原子。给定一个信号y,它能够被表示成这些原子的稀疏线性组合。信号 y 能够被表达为 y = Dx ,或者。
字典矩阵中所谓过完备性,指的是原子的个数远远大于信号y的长度(其长度非常显然是n),即n<<k。
2.MP算法(匹配追踪算法)
2.1 算法描写叙述
作为对信号进行稀疏分解的方法之中的一个,将信号在完备字典库上进行分解。
假定被表示的信号为y,其长度为n。假定H表示Hilbert空间,在这个空间H里,由一组向量构成字典矩阵D,当中每一个向量能够称为原子(atom),其长度与被表示信号 y 的长度n同样,并且这些向量已作为归一化处理,即|,也就是单位向量长度为1。MP算法的基本思想:从字典矩阵D(也称为过完备原子库中),选择一个与信号
y 最匹配的原子(也就是某列),构建一个稀疏逼近,并求出信号残差,然后继续选择与信号残差最匹配的原子,重复迭代,信号y能够由这些原子来线性和,再加上最后的残差值来表示。非常显然,假设残差值在能够忽略的范围内,则信号y就是这些原子的线性组合。假设选择与信号y最匹配的原子?怎样构建稀疏逼近并求残差?怎样进行迭代?我们来具体介绍使用MP进行信号分解的步骤:[1] 计算信号 y 与字典矩阵中每列(原子)的内积,选择绝对值最大的一个原子,它就是与信号 y 在本次迭代运算中最匹配的。用专业术语来描写叙述:令信号,从字典矩阵中选择一个最为匹配的原子,满足,r0
表示一个字典矩阵的列索引。这样,信号 y 就被分解为在最匹配原子的垂直投影分量和残值两部分,即:。[2]对残值R1f进行步骤[1]相同的分解,那么第K步能够得到:
, 当中 满足。可见,经过K步分解后,信号 y 被分解为:,当中。
2.2 继续讨论
(1)为什么要假定在Hilbert空间中?Hilbert空间就是定义了完备的内积空。非常显然,MP中的计算使用向量的内积运算,所以在在Hilbert空间中进行信号分解理所当然了。什么是完备的内积空间?篇幅有限就请自己搜索一下吧。
(2)为什么原子要事先被归一化处理了,即上面的描写叙述。内积经常使用于计算一个矢量在一个方向上的投影长度,这时方向的矢量必须是单位矢量。MP中选择最匹配的原子是,是选择内积最大的一个,也就是信号(或是残值)在原子(单位的)垂直投影长度最长的一个,比方第一次分解过程中,投影长度就是。,三个向量,构成一个三角形,且和正交(不能说垂直,可是能够想象二维空间这两个矢量是垂直的)。
(3)MP算法是收敛的,由于,和正交,由这两个能够得出,得出每个残值比上一次的小,故而收敛。
2.3 MP算法的缺点
如上所述,假设信号(残值)在已选择的原子进行垂直投影是非正交性的,这会使得每次迭代的结果并不少最优的而是次最优的,收敛须要非常多次迭代。举个样例说明一下:在二维空间上,有一个信号 y 被 D=[x1, x2]来表达,MP算法迭代会发现总是在x1和x2上重复迭代,即,这个就是信号(残值)在已选择的原子进行垂直投影的非正交性导致的。再用严谨的方式描写叙述[1]可能easy理解:在Hilbert空间H中,,,定义,就是它是这些向量的张成中的一个,MP构造一种表达形式:;这里的Pvf表示
f在V上的一个正交投影操作,那么MP算法的第 k 次迭代的结果能够表演示样例如以下(前面描写叙述时信号为y,这里变成f了,请注意):
假设 是最优的k项近似值,当且仅当。因为MP仅能保证,所以普通情况下是次优的。这是什么意思呢?是k个项的线性表示,这个组合的值作为近似值,仅仅有在第k个残差和正交,才是最优的。假设第k个残值与正交,意味这个残值与fk的随意一项都线性无关,那么第k个残值在后面的分解过程中,不可能出现fk中已经出现的项,这才是最优的。而普通情况下,不能满足这个条件,MP一般仅仅能满足第k个残差和xk正交,这也就是前面为什么提到“信号(残值)在已选择的原子进行垂直投影是非正交性的”的原因。假设第k个残差和fk不正交,那么后面的迭代还会出现fk中已经出现的项,非常显然fk就不是最优的,这也就是为什么说MP收敛就须要很多其它次迭代的原因。不是说MP一定得到不到最优解,并且其前面描写叙述的特性导致一般得到不到最优解而是次优解。那么,有没有办法让第k个残差与正交,方法是有的,这就是以下要谈到的OMP算法。
3.OMP算法
3.1 算法描写叙述
OMP算法的改进之处在于:在分解的每一步对所选择的所有原子进行正交化处理,这使得在精度要求同样的情况下,OMP算法的收敛速度更快。
那么在每一步中怎样对所选择的所有原子进行正交化处理呢?在正式描写叙述OMP算法前,先看一点基础思想。
先看一个 k 阶模型,表示信号 f 经过 k 步分解后的情况,似乎非常眼熟,但要注意它与MP算法不同之处,它的残值与前面每一个分量正交,这就是为什么这个算法多了一个正交的原因,MP中仅与近期选出的的那一项正交。
(1)
k + 1 阶模型例如以下:
(2)
应用 k + 1阶模型减去k 阶模型,得到例如以下:
(3)
我们知道,字典矩阵D的原子是非正交的,引入一个辅助模型,它是表示对前k个项的依赖,描写叙述例如以下:
(4)
和前面描写叙述类似,在span(x1, ...xk)之中的一个上的正交投影操作,后面的项是残值。这个关系用数学符号描写叙述:
请注意,这里的 a 和 b 的上标表示第 k 步时的取值。
将(4)带入(3)中,有:
(5)
假设一下两个式子成立,(5)必定成立。
(6)
(7)
令,有
当中。
ak的值是由求法非常easy,通过对(7)左右两边加入�作内积消减得到:
后边的第二项由于它们正交,所以为0,所以能够得出ak的第一部分。对于,在(4)左右两边中与作内积,能够得到ak的第二部分。
对于(4),能够求出,求的步骤请參见參考文件的计算细节部分。为什么这里不提,由于后面会介绍更简单的方法来计算。
3.2 收敛性证明
通过(7),因为与正交,将两个残值移到右边后求二范的平方,并将ak的值代入能够得到:
可见每一次残差比上一次残差小,可见是收敛的。
3.3 算法步骤
整个OMP算法的过程例如以下:
因为有了上面的来龙去脉,这个算法就相当好理解了。
到这里还不算完,后来OMP的迭代运算用第二种方法能够计算得知,有位同学的论文[2]描写叙述就很好,我就直接引用进来:
对照中英文描写叙述,本质都是一样,仅仅是有细微的区别。这里顺便贴出网一哥们写的OMP算法的代码,源出处不得而知,共享给大家。
再贴另外一个洋牛paper[3]中关于OMP的描写叙述,之所以引入,是由于它描写叙述的很严谨,可是也有点苦涩难懂,只是有了上面的基础,就easy多了。
它的描写叙述中的Sweep步骤就是寻找与当前残差最大的内积时列在字典矩阵D中的索引,它的这个步骤描写叙述说明为什么要选择内积最大的以及怎样选择。见下图,说的很清晰。
它的算法步骤Update Provisional Solution中求非常easy,就是在 b = Ax 已知 A和b求x, 在x的最小二范就是A的伪逆与b相乘,即:
看上去头疼,其有用matlab很easy,看看上面的matlab的代码就明确了。
我们能够看得出来,算法流程清晰明了,还是非常好理解的。这正是OMP算法的魅力,作为工具使用简单,背后却隐藏着非常有趣的思想。
写这篇博客的目的,是由于搜索了一下,MP和OMP没有人非常具体的介绍。文献[1]讲的非常清楚的,大家有兴趣能够找来看看。不要被老板发现我竟然在搜中文文献还写中文博客。
參考文献:
[1] Orthogonal Matching Pursuit:Recursive Function Approximat ion with Applications to Wavelet Decomposition
[2]http://wenku.baidu.com/view/22f3171614791711cc7917e4.html
[3] From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
MP算法和OMP算法及其思想的更多相关文章
- 最小生成树——Prim算法和Kruskal算法
洛谷P3366 最小生成树板子题 这篇博客介绍两个算法:Prim算法和Kruskal算法,两个算法各有优劣 一般来说当图比较稀疏的时候,Kruskal算法比较快 而当图很密集,Prim算法就大显身手了 ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- mahout中kmeans算法和Canopy算法实现原理
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...
- 转载:最小生成树-Prim算法和Kruskal算法
本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...
- 0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论
一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i ...
- 最短路径——Dijkstra算法和Floyd算法
Dijkstra算法概述 Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图(无 ...
- FIFO调度算法和LRU算法
一.理论 FIFO:先进先出调度算法 LRU:最近最久未使用调度算法 两者都是缓存调度算法,经常用作内存的页面置换算法. 打一个比方,帮助你理解.你有很多的书,比如说10000本.由于你的书实在太多了 ...
- prim 算法和 kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- 求最小生成树——Kruskal算法和Prim算法
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这两个算法其实都是贪心思想的使用,但又能求出最优解.(代码借鉴http://blog.csdn.net/ ...
随机推荐
- Length of Last Word | Leetcode
Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the l ...
- JS单元测试框架:QUnit
QUnit:jQuery的单元测试框架,但不仅限于jQuery(从这个工具不需要引用jquery.js可以看出) index.html <!-- 官网 http://qunitjs.com/ - ...
- cmd下运行java文件时,找不到或无法加载主类的解决方法
最近再看java,却被一个看似很基础的hellorworld头疼了十几分钟,百度了一下,若你在cmd下编辑及运行.java文件时报错,解决方案如下,如图所示:
- sublime部署开发环境
安装nodejs 去官网下载安装,暂时不建议安装5.0以上版本. 命令行运行以下命令查看是否安装成功: 全局安装gulp $ npm install -g gulp 全局安装requirejs 压缩资 ...
- 实战 SSH 端口转发
转自实战 SSH 端口转发 通过本文的介绍,读者可以从中了解到如何应用 SSH 端口转发机制来解决日常工作 / 生活中的一些问题.学会在非安全环境下使用端口转发来加密网络应用,保护个人隐私以及重要商业 ...
- Linux 下编译、安装、配置 QT
转自Linux 下编译.安装.配置 QT 注意:编译安装耗时费力,且很容易出错,要不断调整编译参数,不推荐使用,否则这将会是一个纠结痛苦的过程. 打算做嵌入式图像处理,计划方案嵌入式Linux+Ope ...
- IntelliJ IDEA SVN的账号修改 信息清除
来到编译器的setting设置 搜索subversion 点击subversion 找到下面的clear auth...按钮,点击一下 就可以了
- mysql日志的查看与开启
mysql的日志类型: 错误日志: log-error 查询日志: log 慢查询日志: log-slow-queries 更新日志: log-update 二进制日志: log-bin 开启错误日志 ...
- ANDROID_MARS学习笔记_S04_008_用Listview、自定义adapter显示返回的微博数据
一.简介 运行结果 二.代码1.xml(1)activity_main.xml <?xml version="1.0" encoding="utf-8"? ...
- 《鸟哥的Linux私房菜》读书笔记五
1. Ctrl+alt+FX(X=1~6)可以切换到6个不同的文字界面终端(Terminal) 再按Ctrl+alt+F7就可以回到X Window,按Ctrl+alt+Backspace这是结束所有 ...