最大权闭合子图,神题

这不是线性代数,这是网络流。

我们看见这是一堆矩阵的运算,而且最后变成了一个数,那么我们就想到,把这个矩阵乘法的过程用具体的数字推出来

我们发现,a是一个01矩阵,然后其实就可以化成这么一个问题:

有n个东西,选了i,j两件东西能得到b[i,j]的价值,然而选i需要c[i]的花费,选j需要c[j]的花费……

这是一个经典的最小割模型,最大权闭合子图,详见胡伯涛论文。

建立S,T。

S连(i,j)边,边权为b[i,j],(i,j)连i、连j边,边权均为∞,i向T连边,边权为c[i]。

然后求最小割,最后答案就是

sum(b[i][j])-最小割答案 (i∈[1..n],j∈[1..n])

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <bitset>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
const int MAXN = 300005;
int n, b[505][505], c[505], s, t, head[MAXN], nume, MaxFlow, ans, dep[MAXN], cur[MAXN];
int init() {
int rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9'){
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9'){
rv = (rv<<1) + (rv<<3) + c -'0';
c = getchar();
}
return fh * rv;
}
struct edge{
int to, nxt, flow, cap;
}e[MAXN<<4];
void adde(int from, int to, int cap){
e[++nume].to = to;
e[nume].nxt = head[from];
e[nume].cap = cap;
head[from] = nume;
}
queue <int> q;
bool bfs(){
q.push(s);
memset(dep,0,sizeof(dep));
dep[s]=1;
while(!q.empty()){
int u = q.front();q.pop();
for(int i = head[u] ; i ; i = e[i].nxt){
int v = e[i].to;
if(!dep[v]&&e[i].flow < e[i].cap){
dep[v] = dep[u] + 1;
q.push(v);
}
}
}
return dep[t];
}
int dfs(int u, int flow) {
if(u == t) return flow;
int tot = 0;
for(int &i = cur[u] ; i&&tot < flow ; i = e[i].nxt) {
int v = e[i].to;
if(dep[v] == dep[u] + 1&&e[i].flow < e[i].cap) {
if(int t = dfs(v, min(e[i].cap - e[i].flow, flow - tot))) {
tot += t;
e[i].flow += t;
e[((i-1) ^ 1 ) + 1].flow -= t;
}
}
}
return tot;
}
void dinic(){
while(bfs()) {
memcpy(cur,head,t*4+4);
MaxFlow+=dfs(s, 0x3f3f3f3f);
}
}
int main() {
freopen("in.txt", "r", stdin);
n=init();
for(int i = 1 ; i <= n ; i++) {
for(int j = 1; j <= n; j++) {
b[i][j] = init();
ans += b[i][j];
}
}
for(int i = 1;i <= n;i++){
c[i]=init();
}
s=0;t=n*n+n+1;
for(int i = 1;i <= n ;i++){
for(int j = 1;j <= n;j++){
adde(s,i*n+j-n,b[i][j]);
adde(i*n+j-n,s,0);
}
}
for(int i = 1;i <= n;i++) {
adde(n*n+i, t, c[i]);
adde(t, n*n+i, 0);
}
int kkk=n*n;
for(int i = 1;i <= n ;i++) {
int ttt=i*n-n;
for(int j=1 ;j <=n ;j++) {
adde(ttt+j,kkk+i,inf);
adde(kkk+i,ttt+j,0);
adde(ttt+j,kkk+j,inf);
adde(kkk+j,ttt+j,0);
}
}
dinic();
cout<<ans-MaxFlow<<endl;
fclose(stdin);
return 0;
}

洛谷 [P3973] 线性代数的更多相关文章

  1. 洛谷P3973 - [TJOI2015]线性代数

    Portal Description 给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\).求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A ...

  2. 【洛谷P3973】[TJOI2015]线性代数(最小割)

    洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^ ...

  3. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  4. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  5. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  6. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

  7. 洛谷P1710 地铁涨价

    P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交  讨论  题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...

  8. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

  9. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

随机推荐

  1. Kubernetes volumes简介

    容器中的磁盘文件生命周期比较短暂,在一些比较复杂的容器应用中会产生一些问题.一.容器crash后,kubelet会重启该容器,但这些文件会丢失掉.二.pod中的多个容器经常需要共享文件.因此,Kube ...

  2. HDU 4034 Graph(Floyd变形——逆向判断)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4034 Problem Description Everyone knows how to calcu ...

  3. java中static关键字的继承问题

    结论:java中静态属性和静态方法可以被继承,但是没有被重写(overwrite)而是被隐藏. 原因: 1). 静态方法和属性是属于类的,调用的时候直接通过类名.方法名完成对,不需要继承机制及可以调用 ...

  4. 我是如何将网站全站启用Https的?-记录博客安装配置SSL证书全过程

    评论»   文章目录 为什么要Https 如何选择Https 安装部署SSL证书 平滑过渡Https 搜索引擎的响应 启用Https小结 正如大家所看到的,部落全站已经启用了Https访问了,连续几天 ...

  5. Asp.net mvc 中Action 方法的执行(二)

    [toc] 前面介绍了 Action 执行过程中的几个基本的组件,这里介绍 Action 方法的参数绑定. 数据来源 为 Action 方法提供参数绑定的原始数据来源于当前的 Http 请求,可能包含 ...

  6. int指令

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  7. express官网学习笔记

    npm init 创建一个package.json npm install express --save-dev 安装到项目依赖 便于多人开发 路由结构定义 app.METHOD(PATH, HAND ...

  8. python_如何修改装饰器中参数?

    案例: 为分析程序内哪些函数执行时间开销较大,我们需定义一个带timeout参数的装饰器 需求: 统计被装饰函数的运行时间 时间大于timeout时,将此次函数调用记录到log日志中 运行时可以修改t ...

  9. 重温吕鑫MFC教学视频(一)

    重温吕鑫MFC教学视频(一)1. picture控件的使用,可以显示icon和bitmap2. WM_Create窗口的创建3. 创建的销毁消息及区别WM_SYSCOMMAND WM_CLOSE WM ...

  10. Spring MVC 配置文件dispatcher-servlet.xml 文件详解(转自 学无止境-yj)

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...