POJ 3304 Segments[直线与线段相交]
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 13514 | Accepted: 4331 |
Description
Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.
Input
Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.
Output
For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.
Sample Input
3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0
Sample Output
Yes!
Yes!
No!
Source
题目大意:给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!。
暴力枚举线段的交点组成直线然后判相交就行了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
}
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return x<a.x||(x==a.x&&y<a.y);
}
void print(){
printf("%lf %lf\n",x,y);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Cross(Vector a,Vector b){
return a.x*b.y-a.y*b.x;
}
double DisPP(Point a,Point b){
Point t=a-b;
return sqrt(t.x*t.x+t.y*t.y);
}
struct Line{
Point s,t;
Line(){}
Line(Point p,Point v):s(p),t(v){}
}a[N];
bool isLSI(Line l1,Line l2){
//puts("isLSI");
//l1.s.print();l1.t.print();
//l2.s.print();l2.t.print();
Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
//printf("%d %d end\n",sgn(Cross(v,u)),sgn(Cross(v,w)));
return sgn(Cross(v,u))!=sgn(Cross(v,w))||!sgn(Cross(v,u));
}
int n,m;
double x,y,x2,y2;
bool check(Line l){
if(sgn(DisPP(l.s,l.t))==) return false;
//printf("check\n");
//l.s.print();l.t.print();
for(int i=;i<=n;i++)
if(!isLSI(l,a[i])) return false;
return true;
} void solve(){
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(check(Line(a[i].s,a[j].s))||check(Line(a[i].s,a[j].t))
||check(Line(a[i].t,a[j].s))||check(Line(a[i].t,a[j].t)))
{puts("Yes!");return;}
puts("No!");
} int main(int argc, const char * argv[]) {
int T=read();
while(T--){
n=read();
for(int i=;i<=n;i++){
scanf("%lf%lf%lf%lf",&x,&y,&x2,&y2);
a[i]=Line(Point(x,y),Point(x2,y2));
}
solve();
} return ;
}
POJ 3304 Segments[直线与线段相交]的更多相关文章
- Segments - POJ 3304 (判断直线与线段是否相交)
题目大意:给出一些线段,然后判断这些线段的投影是否有可能存在一个公共点. 分析:如果这些线段的投影存在一个公共点,那么过这个公共点作垂线一定与所有的直线都想交,于是题目转化成是否存在一个直线可以经 ...
- POJ 3304 Segments(线的相交判断)
Description Given n segments in the two dimensional space, write a program, which determines if ther ...
- POJ 2074 /// 判断直线与线段相交 视野盲区
题目大意: 将所有物体抽象成一段横向的线段 给定房子的位置和人行道的位置 接下来给定n个障碍物的位置 位置信息为(x1,x2,y) 即x1-x2的线段 y相同因为是横向的 求最长的能看到整个房子的一段 ...
- POJ 3304 Segments(计算几何:直线与线段相交)
POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...
- POJ 3304 Segments 判断直线和线段相交
POJ 3304 Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...
- POJ 3304 Segments(判断直线与线段是否相交)
题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...
- 判断直线与线段相交 POJ 3304 Segments
题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...
- poj 3304(直线与线段相交)
传送门:Segments 题意:线段在一个直线上的摄影相交 求求是否存在一条直线,使所有线段到这条直线的投影至少有一个交点 分析:可以在共同投影处作原直线的垂线,则该垂线与所有线段都相交<==& ...
- poj 3304 Segments (题意理解出错,错误的只枚举了过线段的直线)
//枚举过每一条线段的直线, //再判断其他线段的点在直线上或被直线穿过 //即求直线与线段相交(叉积) #include<stdio.h> #include<math.h> ...
随机推荐
- java与C++变量初始化的对比
java尽力保证:所有变量在使用前都能得到恰当的初始化 ①函数/方法局部变量的初始化 在C/C++中,变量的初始化还是得依赖于程序员的自觉性.对于函数局部变量,编译器不会为基本类型赋予默认初始值,新手 ...
- mitm6:通过IPv6攻破IPv4网络
一.前言 虽然IPv6正在互联网上逐步推广,但在内部网络环境中使用IPv6的公司依然非常稀少.然而,大多数公司并不知道,即使他们没有主动去使用IPv6,但从Windows Vista以来,所有的Win ...
- Dockerfile中CMD和ENTRYPOINT的区别
当启动一个容器时,CMD和ENTRYPOINT都可以用来执行启动命令.但它们的具体用法还是有一些区别: 1. Dockerfile必须至少指定CMD或者ENTRYPOINT其中的一个. 2. ENTR ...
- [国嵌笔记][028][Bootloader设计蓝图]
Bootloader的作用就是启动Linux内核 U-Boot简介 1.U-Boot是用于多种嵌入式CPU(ARM.x86.MIPS等)的bootloader程序,U-Boot不仅支持嵌入式Linux ...
- ECMAScript 5 新特性
Strict模式 开启strict: 在文件头部,或者在一个function头部内,添加‘use strict’或者“use strict”. Strict模式的限制,以及违反时出现的异常: 新定制了 ...
- Switch 语句
如果您希望有选择地执行若干代码块之一,请使用 Switch 语句. 使用 Switch 语句可以避免冗长的 if..elseif..else 代码块. 语法 工作原理: 对表达式(通常是变量)进行一次 ...
- 谁能教我iCloud怎么用?
iCloud是苹果公司所提供的云端服务,使用者可以免费储存5GB的资料.你已经开始使用IOS5,并且你很兴奋的着手于将它同步至云服务层.以下就是怎样让你的设备更新至云服务层的非常简单的步骤.在你的iO ...
- socket 编程--sockaddr与sockaddr_in区别与联系(转)
在linux环境下,结构体struct sockaddr在/usr/include/linux/socket.h中定义,具体如下:typedef unsigned short sa_family_t; ...
- 解决span的bug--不能自动换行的问题
span标签元素不能自动换行,在超出父盒子的宽度后不能够自动换行 如下界面: 解决办法:将span属性加上display:block设置为行级元素:设置宽度然后在强制断行 效果如下:
- Oracle 视图 (待更新, 缓存)
参考: 视图.索引.存储过程优缺点: http://www.cnblogs.com/SanMaoSpace/p/3147059.html oracle视图总结(转):http://tianwei013 ...