【图的DFS】图的DFS非递归算法
在DFS的递归算法中,DFS框架如下:
1访问起点v0
2依次以v0的未访问的连接点为起点,DFS搜索图,直至图中所有与v0路径相通的顶点都被访问。
3若该图为非连通图,则图中一定还存在未被访问的顶点,选取该顶点为起点,重复上述DFS过程,直至图中全部顶点均被访问过为止。
而在非递归的DFS框架中,运用栈来取代递归(递归的本质就是入栈出栈),所以用自定义的栈取代递归栈,具体框架如下:
1首先初始化待使用栈,然后将第一个结点入栈
2然后只要栈不空,重复下面的操作:将栈顶元素弹出,然后看该元素是否访问过
3若没访问过,则访问,置访问标记,然后将该元素的所有相邻顶点入栈(注意是全部,所以应用一个for或while循环来判断哪些元素该入栈)
4重复2,直至全部顶点均被访问过。
基于上述思路代码如下:
#include<iostream>
using namespace std;
typedef struct node
{
int t;
struct node *pnext;
}node,*pnode;
void init(pnode s)
{
s->pnext=NULL;
}
void push(pnode s,int x)
{
pnode ptemp=(pnode)malloc(sizeof(node));
ptemp->t=x;
ptemp->pnext=s->pnext;
s->pnext=ptemp;
}
void pop(pnode s,int *x)
{
pnode ptemp=s->pnext;
*x=ptemp->t;
s->pnext=ptemp->pnext;
free(ptemp); }
bool isEmpty(pnode s)
{
pnode p=s->pnext;
if(NULL==p)
return true;
else
return false;
}
node s;
const int M=4;
int visit[M];
int arc[M][M]={{0,1,0,0},{1,0,1,0},{0,1,0,1},{0,0,1,0}}; void dfs(int g[][M],int v)
{
init(&s);//使用自定义栈之前对栈进行初始化
push(&s,v);
while(!isEmpty(&s))
{
pop(&s,&v);
if(!visit[v])
{
cout<<v<<' ';
visit[v]=true;
for(int k=0;k<M;k++)
{
if(!visit[k]&&g[v][k]==1)
{
push(&s,k);
}
}
}
} }
void DFS(int g[M][M],int v)
{
printf("%d ",v);
visit[v]=true;
for(int k=0;k<M;k++)
{
if(!visit[k]&&(g[v][k])==1)
DFS(g,k);
}
}
void main()
{
dfs(arc,2);
for(int i=0;i<M;i++)
{
visit[i]=0;
}
cout<<'\n';
DFS(arc,2);
cout<<'\n';
for(int i=0;i<M;i++)
{
visit[i]=0;
}
dfs(arc,2);//求以顶点2为起点的DFS路径
}
程序运行结果如下:
上述输出结果为以顶点2为起点的DFS路径,注意DFS的路径可能不止一种情况,如上述输出表示存在两种情况。
【图的DFS】图的DFS非递归算法的更多相关文章
- 图的 储存 深度优先(DFS)广度优先(BFS)遍历
图遍历的概念: 从图中某顶点出发访遍图中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历(Traversing Graph).图的遍历算法是求解图的连通性问题.拓扑排序和求关键路径等算法的基础.图的 ...
- 转载:一幅图弄清DFT与DTFT,DFS的关系
转载:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DF ...
- 【数据结构】图的基本操作——图的构造(邻接矩阵,邻接表),遍历(DFS,BFS)
邻接矩阵实现如下: /* 主题:用邻接矩阵实现 DFS(递归) 与 BFS(非递归) 作者:Laugh 语言:C++ ***************************************** ...
- BZOJ 4671 异或图 | 线性基 容斥 DFS
题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...
- JAVA实现图的邻接表以及DFS
一:定义邻接表结构储存图 package 图的遍历; //邻接表实现图的建立 //储存边 class EdgeNode { int index; // 习惯了用index,其实标准写法是(adjVer ...
- Paddle Graph Learning (PGL)图学习之图游走类模型[系列四]
Paddle Graph Learning (PGL)图学习之图游走类模型[系列四] 更多详情参考:Paddle Graph Learning 图学习之图游走类模型[系列四] https://aist ...
- HDU5772 String problem 最大权闭合图+巧妙建图
题意:自己看吧(不是很好说) 分析: 网络流:最大权闭合子图. 思路如下: 首先将点分为3类 第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得 ...
- 看懂UML类图与时序图
看懂UML类图和时序图 这里不会将UML的各种元素都提到,我只想讲讲类图中各个类之间的关系: 能看懂类图中各个类之间的线条.箭头代表什么意思后,也就足够应对 日常的工作和交流: 同时,我们应该能将类图 ...
- 设计模式——1.概述&UML类图和时序图
声明:本博客设计模式相关文章均整理和修改自网络,原文地址:图说设计模式 学习设计模式的3个层次—— 1.熟悉所有设计模式: 2.能够用代码实现: 3.运用到工作的项目中. 设计模式指导软件开发,学习设 ...
- 看懂UML类图和时序图
看懂UML类图和时序图 这里不会将UML的各种元素都提到,我只想讲讲类图中各个类之间的关系: 能看懂类图中各个类之间的线条.箭头代表什么意思后,也就足够应对 日常的工作和交流: 同时,我们应该能将类图 ...
随机推荐
- Spring MVC - 静态页面
环境搭建 以下示例显示如何使用Spring MVC Framework编写一个简单的基于Web的应用程序,它可以使用<mvc:resources>标记访问静态页面和动态页面.首先使用Int ...
- C++ 智能指针 auto_ptr 和 shared_ptr
首先,如果你不知道什么是智能指针,请先移步:C++智能指针简单剖析 1.auto_ptr #ifndef AUTO_PTR_H #define AUTO_PTR_H template<typen ...
- python3全栈开发-补充UDP的套接字、操作系统、并发的理论基础
一.基于UDP的套接字 udp套接字简单示例 import socket ip_port=('1.1.1.1',8181) BUFSIZE=1024 udp_server_client=socket. ...
- Oracle 导入、导出DMP(备份)文件
首先说明dmp文件: Oracle备份文件是以dmp结尾,这种文件是oracle的逻辑备份文件,常用于数据库逻辑备份,数据库迁移等操作. 一.Oracle导入备份文件步骤:我用的是Oracle 11g ...
- ubuntu下安装 python 常用软件
1.用于科学计算的常用包: sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-noteb ...
- Django网站制作
创建mysite目录 django-admin.py startproject mysite这个命令作用是:这将创建在当前目录创建一个mysite目录 前提是从命令行上cd到你想储存你代码的目录,然后 ...
- 事务的特性(ACID)
一.事务 定义:所谓事务,它是一个操作序列,这些操作要么都执行,要么都不执行,它是一个不可分割的工作单位. 准备工作:为了说明事务的ACID原理,我们使用银行账户及资金管理的案例进行分析. // 创建 ...
- Dynamics CRM 导出系统中实体的属性字段到EXCEL
我们在CRM中看元数据信息,可以通过SDK中的metadata browser的解决方案包,但该解决方案包只是在可视化上方便了,但如果我们需要在excel中整理系统的数据字典时这个解决方案包就派不上用 ...
- 初识gd库
必备基础 开启GD拓展 列表使用 获取图片信息代码 图片详细信息 特效函数 示例 运行结果 分析 获取图片基本信息 获取图片宽度 获取图片高度 获取图片后缀名 获取图片mime类型 操作图片 添加文字 ...
- SceneKit:简单的3D游戏场景搭建
SceneKit是Apple用来开发休闲3D游戏的框架,不同于底层的OpenGL库,你仅仅需要很少的代码就可以快速看到实际的3D场景效果.下面简单的聊聊搭建一个3D游戏场景需要做的事情. 首先你必须用 ...