P1490 买蛋糕

题目描述

野猫过生日,大家当然会送礼物了(咳咳,没送礼物的同志注意了哈!!),由于不知道送什么好,又考虑到实用性等其他问题,大家决定合伙给野猫买一个生日蛋糕。大家不知道最后要买的蛋糕的准确价格,而只会给蛋糕估价,即要买一个不超过多少钱的蛋糕。众OIer借此发挥:能否用最少的钱币数去凑成估价范围内的所有价值,使得不管蛋糕价值多少,都不用找钱……

现在问题由此引出:对于一个给定的n,能否用最少的不等的正整数去组成n以内(包括n)的所有的正整数呢?如果能,最少需要多少个正整数,用最少个数又有多少不同的组成方法呢?

输入输出格式

输入格式:

只有一行包含一个整数n(1<=n<=1000)。

输出格式:

一行两个数,第一个数是最少需要多少个数,第二个数是用最少个数的组成方案个数。两个答案用空格分隔。


  • 首先明确第一个问题:这个最小的正整数是多少?

也许你可以打表看出来,也许不能,但别急,我们有看似靠谱一点的思维方法

看看样例:6

可行方案:

①\(1\) \(2\) \(3\);

②\(1\) \(2\) \(4\).

我们发现,对于方案①,组成3的时候有两种方法(1+2或3),而方案②只有一种。换而言之,3的利用是有浪费的。而不浪费的方案②还可以组成7。

那么,我们咋让她(每个数)都用好自己呢

很简单,百合就行了

联想一下二进制位下的数

\(1\),\(10\),\(11\),\(100\),\(101\),\(110\),\(111\),\(1000\)...

可不是嘛,这个\(2^i\)的每个数利用率可高了

由此可知,二进制的位数即为这个最小的正整数


  • 想明白第一问以后,应该给出了一个相对的第二问的思维导向。(当然不绝对哈)

当每个数的利用率最大的时候,她们能够凑成的最大整数即为她们的和,这点是毋庸置疑的。

那么,在利用率相对不是那么大的时候呢?

我们注意到,此时已经有了一个限制条件:已有的最小正整数

手动模拟一下,确实是仍然成立的。(其实是不太会证啦)

这时候,我们就把参与量已使用的各数之和凑成的最大整数搞到一起去了

考虑\(dp[k]\)代表凑成时\(k\)的方案数。看看这时候还要压哪些信息进去。

显然,剩下的必要信息还有第\(i\)个数和第\(i\)个数的值\(j\)

\(dp[i][j][k]\)表示已选\(i\)个数,第\(i\)个数为\(j\),前\(i\)个数和为\(k\)(凑成的最大整数位\(k\))的时候的方案数

转移方程 \(dp[i+1][l][k+l]+=dp[i][j][k];\)

其中\(l\)为枚举的下一个填充数

核心代码:

    dp[1][1][1]=1;
    for(int i=1;i<ans;i++)
        for(int j=i;j<=(1<<(i-1));j++)
            for(int k=i*(i-1)/2;k<(1<<i);k++)
                for(int l=j+1;l<=k+1;l++)
                    if(l+k<=n)
                        dp[i+1][l][k+l]+=dp[i][j][k];
                    else
                        dp[i+1][l][n]+=dp[i][j][k];

注意\(j,k,l\)的上下界,都是被已经得到的第一问给约束住了

当然,也没必要跑这么死,比如\(k\)从\(i\)开始反而会快一些。

至于\(if\)和\(else\)的判断,是为了方便求最后结果的一点点小贪心了。


2018.5.2

洛谷 P1490 解题报告的更多相关文章

  1. 洛谷 P1462 解题报告

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  2. 洛谷 P1879 解题报告

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ M ≤ 12; 1 ≤ ...

  3. 洛谷 P1069 解题报告

    P1069 细胞分裂 题目描述 \(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家.现在,他正在为一个细胞实验做准备工作:培养细胞样本. \(Hanks\) ...

  4. 洛谷 P2491 解题报告

    P2491 消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个 ...

  5. 洛谷 P2587 解题报告

    P2587 [ZJOI2008]泡泡堂 题目描述 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表队由n名选手组成,比赛的项目是老少咸宜的网络游戏 ...

  6. 洛谷 P1054 解题报告

    P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...

  7. 洛谷 P1053 解题报告

    P1053 篝火晚会 题目描述 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了"小教官".在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会.一共有 ...

  8. 洛谷 P1057 解题报告

    P1057 传球游戏 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹 ...

  9. 洛谷 P1430 解题报告

    P1430 序列取数 题目描述 给定一个长为\(n\)的整数序列\((n<=1000)\),由\(A\)和\(B\)轮流取数(\(A\)先取).每个人可从序列的左端或右端取若干个数(至少一个), ...

随机推荐

  1. 9.3、Libgdx手势检测

    (官网:www.libgdx.cn) 触摸屏在输入的基础上增加了手势检测,比如两个手指实现缩放,单击或双击屏幕,长按屏幕等. Libgdx提供了GestureDetector来帮助你检测以下手势: t ...

  2. 9.2.1、Libgdx的输入处理之轮询

    (官网:www.libgdx.cn) 轮询是检测输入设备的当前状态,比如特定的按键按下,屏幕第一个手指的位置等等.这是一个快速简单的处理用户输入的方式,并且应用到很多的游戏中. 注意:如果你处理轮询, ...

  3. 高德地图SDK使用经验

    下文说的是高德地图 Android SDK版本,详细版本如下: 2D地图:v2.3.1 定位:v1.3.0 导航:v1.1.1 发现的问题如下,其中一些疑是地图BUG,一些是需要你自己小心的地方: 1 ...

  4. Ubuntu下编译SHTOOLS

    SHTOOLS是使用Fortran语言写的一个专门用于处理球谐函数的一个开源库,更多的介绍请猛戳这里,关于这个库的安装和使用,都在官网上有详细的说明,虽然很详细,但是编译的时候还是比较费劲,下面将我在 ...

  5. SMO

    序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的约翰·普莱特(John P ...

  6. Android 高逼格纯代码实现类似微信钱包带分割线的GridView

    前言    原文地址:http://blog.csdn.net/sk719887916/article/details/40348837: Tamic 通过上两篇关于自定view的文章,在自定义vie ...

  7. C语言之linux内核实现平方根计算算法

    关于平方根的计算,在linux内核中也有实现,就像math.h数学库里的sqrt这个函数一样. 平方根的公式定义: 如果一个非负数x的平方等于a,即    ,    ,那么这个非负数x叫做a的算术平方 ...

  8. Unity修改Particles Render Material(Unity3D开发之二十三)

    猴子原创,欢迎转载.转载请注明: 转载自Cocos2Der-CSDN,谢谢! 原文地址: http://blog.csdn.net/cocos2der/article/details/48372999 ...

  9. iPhone实现自定义多选列表

    好久没更新博客了,今天写了一个自定义的多选列表,可以跟爱学习的各位进行分享,首先我们先来看一下效果图: 一般大家都是用UITableView自己的编辑模式来实现CheckBox的,这里我们用自定义Ce ...

  10. SharePoint 解决方案手动打包简单介绍

    介绍:在使用SharePoint中,我们经常需要做的就是打包解决方案,我们来介绍下SharePoint解决方案的手动部署,我自己觉得,解决方案是SharePoint中非常好的一个功能,部署和使用起来相 ...