python实现k-近邻算法
参考:《机器学习实战》- Machine Learning in Action
一、 必备的包
实现此算法需要准备以下的包:
• matplotlib,用于绘图
• numpy,数组处理库
我一般是用pip安装,若不熟悉这些库,可以搜索一下它们的简单教程。
二、 基本思想
假设存在一个样本数据集合,也称作训练样本集
,并且样本集中每个数据都存在标签。输入测试数据后,通过采用测量不同特征值之间的距离
进行分类,即挑选前k个最相似的样本数据。最后,选择k个最相似数据中出现次数最多的分类,作为测试数据的分类结果。
伪代码:
- 计算已知类别数据集中的点与当前点的距离;
- 按照距离递增次序排序;
- 选取与当前点距离最小的k个点;
- 确定前k个点所在类别的出现频率;
- 返回频率最高的类别作为预测分类。
一般而言,计算距离会采用欧式距离
。
三、 代码
背景:有一个约会网站,交往对象总结下来可以分成三种类型:不喜欢的人,魅力一般的人,极具魅力的人。若提供了样本为,三个特征:每年获得的飞行常客里程数,玩视频游戏所耗百分比,每周消费的冰淇淋升数,以及给出所属的类型。
样本文件为:datingTestSet.txt
代码如下:
# -*- coding:utf-8 -*-
from numpy import *
import matplotlib
import matplotlib.pyplot as plt
#---简单的二维分类器---#
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0] #得到行数
diffMat = tile(inX, (dataSetSize,1)) - dataSet #沿维度重复
sqDiffMat = diffMat**2 #矩阵每个元素平方
sqDistances = sqDiffMat.sum(axis=1) #将每行相加
distance = sqDistances**0.5 #开方
sortedDistIndicies = distance.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), \
key=lambda item:item[1], reverse=True) #参数1是可迭代对象,参数2表示用第2个域的值,参数3表示降序
return sortedClassCount[0][0]
#---社交网络分类---#
#文件处理
def file2matrix(filename):
fr = open(filename)
arrayOfLines = fr.readlines()
numberOfLines = len(arrayOfLines)
returnMat = zeros((numberOfLines, 3))
classLabelVector = []
index = 0
for line in arrayOfLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
if listFromLine[-1].startswith('large'):
classLabelVector.append(3)
elif listFromLine[-1].startswith('small'):
classLabelVector.append(2)
else:
classLabelVector.append(1)
index += 1
return returnMat, classLabelVector
#对数据进行归一化处理
def autoNorm(dataSet):
minVals = dataSet.min(0) #得到每个特征的最小值
maxVals = dataSet.max(0) #得到每个特征的最大值
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0] #得到行数
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals
#对模型进行测试
def datingClassTest():
hoRatio = 0.10
datingDataMat, datingLabels = file2matrix('datingTestSet.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:], \
datingLabels[numTestVecs:m],3)
print "the classifier came back with: %d, the real answer is: %d" \
% (classifierResult, datingLabels[i])
if classifierResult != datingLabels[i]:
errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
#约会网站预测函数
def classifyPerson():
resultList = ['not at all', 'in small doses', 'in large doses']
PercentTats = float(raw_input('PercentTats of time spent playing video games?'))
ffMiles = float(raw_input('frequent flier miles earned per year?'))
iceCream = float(raw_input('liters of ice cream consumed per year?'))
datingDataMat, datingLabels = file2matrix('datingTestSet.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, PercentTats, iceCream])
classifierResult = classify0((inArr - minVals)/ranges, normMat, datingLabels, 3)
print "You will probably like this person: ", \
resultList[classifierResult - 1]
if __name__ == '__main__':
#datingClassTest()
#classifyPerson()
testVector = img2vector('testDigits/0_13.txt')
print testVector[0,0:31]
python实现k-近邻算法的更多相关文章
- 机器学习 Python实践-K近邻算法
机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...
- 用python实现k近邻算法
用python写程序真的好舒服. code: import numpy as np def read_data(filename): '''读取文本数据,格式:特征1 特征2 -- 类别''' f=o ...
- 用Python从零开始实现K近邻算法
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通 ...
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
- python 机器学习(二)分类算法-k近邻算法
一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提 ...
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- 机器学习实战笔记(Python实现)-01-K近邻算法(KNN)
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
- 机器学习03:K近邻算法
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
随机推荐
- 资料--Linux开发
<Linux/UNIX系统编程手册>凯利斯克 (Michael Kerrisk) <UNIX环境高级编程>(第2版),史蒂文斯著 <深入理解 Linux 内核>(第 ...
- Tmux使用说明
tmux通过一个终端登录远程主机并运行,其中可开启多个控制台的终端复用.其结构如下: server 服务器.输入tmux命令时就开启了一个服务器. session 会话.一个服务器可以包含多 ...
- C#图解教程 第十一章 枚举
枚举 枚举 设置底层类型和显式值隐式成员编号 位标志 Flags特性使用位标志的示例 关于枚举的补充 枚举 枚举 枚举是由程序员定义的类型与类或结构一样. 与结构一样,枚举是值类型,因此直接存储它们的 ...
- .class, class.forName(), getClass()的区别
类名.class叫做"类字面量",因class是关键字, 所以类名.class编译时确定. getclass()运行时根据实际实例确定,getClass()是动态而且是final的 ...
- 配置Tomcat线程参数maxThreads、acceptCount
一.配置Tomcat/conf/server.xml修改配置 <Connector port="8080" protocol="org.apache.coyote. ...
- 【Luogu1337】平衡点(模拟退火)
[Luogu1337]平衡点(模拟退火) 题面 洛谷 题解 和BZOJ3680吊打XXX是一样的.. 但是数据很强呀.. 疯狂调参 各种WA... 很无奈呀.... #include<iostr ...
- 【BZOJ1087】【SCOI2005】互不侵犯(状态压缩,动态规划)
题面 这种傻逼题懒得粘贴了... 题解 傻逼题 \(f[i][j][k]\)表示当前第\(i\)列,当前放置状态为\(j\),已经放了\(k\)个 暴力判断状态合法性,暴力判断转移合法性,然后统计答案 ...
- BZOJ第1页养成计划
嗯,用这篇博客当一个目录,方便自己和学弟(妹?)们查阅.不定期更新. BZOJ1000 BZOJ1001 BZOJ1002 BZOJ1003 BZOJ1004 BZOJ1005 ...
- iOS开发——iOS国际化 APP内语言切换
最近一个一直在迭代的老项目收到一份新的开发需求,项目需要做国际化适配,简体中文+英文.由于项目中采用了storyboard和纯代码两种布局方式,所以国际化也要同时实现.上网查了些资料,实现了更改系统语 ...
- Mysql 忘记管理员密码更改
对管理员设置密码 第一种方式: #mysqladmin -u root password 'new-password'; #mysqladmin -u root -h localhost passwo ...