【UVA–11997 K Smallest Sums 】
·哦,这题要用优先队列?那大米饼就扔一个手写堆上去吧!
·英文题,述大意:
输入n个长度为n的序列(题中是k,2<=k<=750)。一种结果定义为:从每个序列中都要挑选一个数加起来。挑选的不同种结果含有的元素可以重复,现在你需要求出在所有的nn个结果中,找到其中最小的n个结果,然后按照从小到大顺序输出这n个结果。
·分析:
我们可以从简单情况加以考虑以得到普遍结论。
当只有1个序列时,那么就直接排个序就可以了(虽然不在数据范围里)。
当只有两个序列,也就是挑选出两个数(来自不同序列)的和我们要的结果。首先,我们怎么取得最小的那个和?毫无疑问,就是这个序列两个的最小数的和。那么第二小的数怎么取得?嗯嗯,肯定是这样:
第二小数=Min(1序列最小数+2序列第二小数,1序列第二小数+2序列最小数)
这样一直思考下去,现在我们知道了第i小的结果,要的到第(i+1)小的结果,就有两种选择加以比较。为了便于我们找到单个序列中第i大,我们给所有序列从小到大排序。
排序后,我们可以知道一个这样的结论:假设现在选择的第p大的组合是a[i]+b[j](注意,排好序了的),那么第p大肯定不会去考虑a[i]+b[j+1],因为a[i]+b[j]<a[i]+b[j+1]。这句奇怪的话只是想说明一个问题,在a[i]+b[j]都还没有被选为答案时,a[k]+b[t](k>=i,t>=j,且等号不同时成立)肯定不用管(管的意思是拿去进行Min的比较)。
快速维护大小关系,我们可以使用优先队列,将各式各样的组合塞进去。但是我们把所有的压进去,时间耗费太多(n*n啊!)。所以,使用上文的结论,那么上文在CODE中的意义是,a[i]+b[j]在优先队列中时,a[k]+b[t]无需存在。当我们挑选第k大的结果时,就是队首元素啦。那么接下来怎么维护?我们是用有序表:(注意a,b还是排好序了的)
a1+b1<=a1+b2<=a1+b3……<=a1+bn
a2+b1<=a2+b2<=a2+b3……<=a2+bn
这样做的话,我们维护了a的有序,那么对于每个组合,当a[i]+b[j]出队被选为答案后,我们就立刻将a[i]+b[j+1](前提是j+1<=n)加入队列作为将来可能的答案。到此我们可以推而广之,有n个序列时,我们输入一个b就和合并一次,将最小的答案直接塞到a中,操作n-1次合并,就完事啦。
手写了一个小堆堆,但是这道题数据小,手写堆没发挥优势。
代码来了:
#include<stdio.h>
#include<algorithm>
#define Exchange(a,b) a^=b^=a^=b
#define go(i,a,b) for(int i=a;i<=b;i++)
using namespace std;const int N=;
int n,a[N],b[N],val[N],I[N];
struct Heap
{
int sz,cur[N],fa,v;
inline void Up_Adjust(int u)
{
fa=u>>;while(u!=&&val[cur[fa]]>val[cur[u]])
Exchange(cur[fa],cur[u]),fa=(u=fa)>>;
}
inline void Down_Adjust(int u)
{
v=u<<;while(v<=sz){v+=val[cur[v]]>val[cur[v+]]&&v<sz;
if(val[cur[v]]>=val[cur[u]])return;
Exchange(cur[u],cur[v]);v=(u=v)<<;}
}
inline void Insert(int i){cur[++sz]=i,Up_Adjust(sz);}
inline void Delete(){Exchange(cur[],cur[sz]);sz--;Down_Adjust();}
}q;
int main()
{
while(~scanf("%d",&n))
{
go(i,,n)scanf("%d",&a[i]);sort(a+,a+n+);
go(k,,n)
{
go(i,,n)scanf("%d",&b[i]);sort(b+,b+n+);q.sz=;
go(i,,n)val[i]=a[i]+b[],I[i]=,q.Insert(i);
go(j,,n){int i=q.cur[];a[j]=val[i];q.Delete();
if(I[i]<n)val[i]+=-b[I[i]]+b[I[i]+],I[i]++,q.Insert(i);}
}
printf("%d",a[]);go(i,,n)printf(" %d",a[i]);puts("");
}
return ;
}//Paul_Guderian
这是一段很长很长的旅程,用尽所有的时光永无止境
我不停地奔跑呼喊和追寻,在我的路上寻找生命的意义。————汪峰《我的路》
【UVA–11997 K Smallest Sums 】的更多相关文章
- 【UVA 11997 K Smallest Sums】优先级队列
来自<训练指南>优先级队列的例题. 题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18702 题意:给定 ...
- UVa 11997 K Smallest Sums 优先队列&&打有序表&&归并
UVA - 11997 id=18702" target="_blank" style="color:blue; text-decoration:none&qu ...
- UVA 11997 K Smallest Sums 优先队列 多路合并
vjudge 上题目链接:UVA 11997 题意很简单,就是从 k 个数组(每个数组均包含 k 个正整数)中各取出一个整数相加(所以可以得到 kk 个结果),输出前 k 小的和. 这时训练指南上的一 ...
- UVa 11997 K Smallest Sums - 优先队列
题目大意 有k个长度为k的数组,从每个数组中选出1个数,再把这k个数进行求和,问在所有的这些和中,最小的前k个和. 考虑将前i个数组合并,保留前k个和.然后考虑将第(i + 1)个数组和它合并,保留前 ...
- 优先队列 UVA 11997 K Smallest Sums
题目传送门 题意:训练指南P189 分析:完全参考书上的思路,k^k的表弄成有序表: 表1:A1 + B1 <= A1 + B2 <= .... A1 + Bk 表2:A2 + B1 &l ...
- uva 11997 K Smallest Sums 优先队列处理多路归并问题
题意:K个数组每组K个值,每次从一组中选一个,共K^k种,问前K个小的. 思路:优先队列处理多路归并,每个状态含有K个元素.详见刘汝佳算法指南. #include<iostream> #i ...
- UVA 11997 K Smallest Sums (多路归并)
从包含k个整数的k个数组中各选一个求和,在所有的和中选最小的k个值. 思路是多路归并,对于两个长度为k的有序表按一定顺序选两个数字组成和,(B表已经有序)会形成n个有序表 A1+B1<=A1+B ...
- 11997 - K Smallest Sums(优先队列)
11997 - K Smallest Sums You’re given k arrays, each array has k integers. There are kk ways to pick ...
- UVA-11997 K Smallest Sums
UVA - 11997 K Smallest Sums Time Limit: 1000MS Memory Limit: Unknown 64bit IO Format: %lld & ...
随机推荐
- Linux进程调度分析
原文:http://www.2cto.com/os/201112/113229.html 操作系统要实现多进程,进程调度必不可少. 有人说,进程调度是操作系统中最为重要的一个部分.我觉得这种说法说得太 ...
- Flask 扩展 自定义扩展
创建一个为视图访问加日志的扩展Flask-Logging,并从中了解到写Flask扩展的规范. 创建工程 先创建一个工程,目录结构如下: flask-logging/ ├ LICENSE # 授权说明 ...
- js的 == 和 ===的区别
1.对于string,number等基础类型,==和===是有区别的 不同类型间比较,==之比较转化成同一类型后的值看值是否相等,===如果类型不同,其结果就是不等,同类型比较,直接进行"值 ...
- 从集合的无序性看待关系型数据库中的"序"
本文目录:1.集合的特征2.集合的无序性3.表中记录的无序性4.集合的"序"和物理存储顺序之间的关系5.查询结果(虚拟表)的无序性.随机性6.为什么总是强调"无序&quo ...
- Ubuntu Desktop 16.04 LTS 下成功配置Jupyter的两个python内核版本(2.7x,3.5x)
Ubuntu Desktop 16.04 LTS 安装好系统默认就有python两个不同版本(2.7.12和3.5.2) 现在来熟悉一下jupyter的对python这两个不同python版本的内核 ...
- Oracle数据库游标精解
游标 定义:标识结果集中数据行的一种容器(CURSOR),游标允许应用程序对查询语句返回的行结果集中的每一行进行相同或不同的操作,而不是一次对整个结果集进行同一种操作.实际上是一种能从包括多条数据记录 ...
- ESP8266 wifi 模块配置,Wechat+APP控制实现
首先刷入安信可的AiCloud 2.0 SDK文件,AiCloud 2.0具体信息参见AiCloud 1.0 和AiCloud 2.0对比 APP见如下二维码下载. 1.安信可AiCloud 2.0 ...
- Python-socket网络编程-Day8
目录Day8-Python socket 11.Socket 11.1.socket和file的区别: 11.2.WEB服务应用: 21.3.更多功能 21.4.socket方法: 41.5. 服务端 ...
- Web Service的工作原理
Web Service基本概念 Web Service也叫XML Web Service WebService是一种可以接收从Internet或者Intranet上的其它系统中传递过来的请求,轻量级的 ...
- java基础总结(1)安装jdk
卸载java java -version yum remove java yum groupjava java 安装java tar -zxvf jdk-8u60-linu ...