【BZOJ2693】jzptab
Time Limit: 5000 ms Memory Limit: 512 MB
description
给你\(n, m\),求\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} lcm(i,j)\)
答案对100000009取模。
多组数据。
input
第一行有一个正整数tt表示数据组数
接下来tt行每行有两个正整数n,mn,m
output
tt行,第ii行为第ii组询问的答案。
sample input
1
4 5
sample output
122
HINT
对于100%的数据:\(t≤10000,n,m≤10^7\)
\(100000009\)不是一个质数。
solution
做了几题之后感觉。。推起来稍微顺手一点不对顺脑一点了qwq?
(结果这题还是做了很久嗯qwq)
首先还是先写式子咯
ans&=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} lcm(i,j)\\
&=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{ij}{gcd(i,j)}&(抱歉lcm你长得太丑了)\\
&=\sum\limits_{k=1}^{min(n,m)}k\sum\limits_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{k}\rfloor}ij[gcd(i,j)=1]\\
\\
&这里的话稍微说明一下,我们枚举i和j的gcd(记为k)\\&然后原来的i可以表示为i_0*k,原来的j表示为j_0*k,\\&\frac{ij}{gcd(i,j)}就变成了i_0*j_0*k,所以就变成了上面那样\\
\\
&=\sum\limits_{k=1}^{min(n,m)}k\sum\limits_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{k}\rfloor}ij\sum\limits_{d|i,d|j}\mu(d)&(\sum\limits_{d|gcd(i,j)}\mu(d)=[gcd(i,j)=1])\\
&=\sum\limits_{k=1}^{min(n,m)}k\sum\limits_{d=1}^{min(\lfloor \frac{n}{k}\rfloor,\lfloor \frac{m}{k}\rfloor)}\mu(d)\sum\limits_{i=1}^{\lfloor \frac{n}{k}\rfloor}i[d\mid i]\sum\limits_{j=1}^{\lfloor \frac{m}{k}\rfloor}j[d\mid j]\\
\\
&观察一下\sum\limits_{i=1}^{\lfloor \frac{n}{k}\rfloor}i[d\mid i],会发现其实这个式子求的就是1到\lfloor \frac{n}{k}\rfloor范围内d的倍数的和\\
\\
&=\sum\limits_{k=1}^{min(n,m)}k\sum\limits_{d=1}^{min(\lfloor \frac{n}{k}\rfloor,\lfloor \frac{m}{k}\rfloor)}\mu(d) (sum(\lfloor \frac{n}{kd}\rfloor)d)(sum(\lfloor \frac{m}{kd}\rfloor)d)&(sum(n)=\sum\limits_{i=1}{n}=\frac{n(n+1)}{2})\\
&=\sum\limits_{T=1}^{min(n,m)}sum(\lfloor \frac{n}{T}\rfloor)sum(\lfloor \frac{m}{T}\rfloor)\sum\limits_{d\mid T}\mu(d)d^2 \frac{T}{d}&(T = kd)
\end{aligned}
\]
化到这一步,我们发现前面的\(sum\)的部分可以直接分块根号搞定(bzoj2820)
后面的东西看起来十分眼熟啊,我们令\(g(x)=\sum\limits_{d\mid x}\mu(d)d^2 \frac{x}{d}\),令\(f(x)=\sum\limits_{d|x}d^2\mu(d)\),令\(h(x)=x\)
那么\(g(x) = \sum\limits_{d\mid x}f(d)h(\frac{x}{d})\),然后由于\(f(d)\)和\(h(\frac{x}{d})\)都是积性函数,所以\(g(x)\)也是积性函数
考虑怎么求\(g(x)\)
我们考虑把这个东西筛出来,按着线性筛的思路来分析一下,求解\(g(x)\)的值
如果说\(x\)为质数,那么显然\(g(x) = x - x^2\)
如果\(x\)不为质数,我们设\(x = i * p\),其中\(p\)为质数,那么有两种情况
\(p \nmid i\) ,由于\(i\)和\(p\)互质而\(g(x)\)为积性函数,\(g(x) = g(i*p) = g(i) * g(p)\)
\(p\mid i\),这个时候就有点。。不是很好搞了。。
我们可以把\(i\)表示为\(t * p^k\)(\(t\)与\(p\)互质)
那么我们就尝试一下从乘了一个\(p\)会有什么影响这个方面来考虑一下
考虑\(g(p^k)\)的值,显然根据\(\mu\)的定义,只有\(\mu(1)\)和\(\mu(p)\)能够提供贡献(其他的\(p\)的指数都>1,所以都是0)
那么我们就可以得到\(g(p^k) = f(1)p^{k} + f(p)p^{k-1}\)
然后写出\(g(p^{k+1})\)的表达式,会发现是\(f(1)p^{k+1} + f(p)p^{k}\)
也就是说\(g(p^{k+1}) = g(p^k) p\)
那么就可以得到\(g(x) = g(i * p) = g(t * p^k *p) = g(t) * g(p^{k}) * p = g(x) * p\)
然后就可以顺利筛出来啦
那这题好像就十分愉快地做完了ovo
#include<iostream>
#include<cstdio>
#include<cstring>
#define MOD 100000009
#define ll long long
using namespace std;
const int MAXN=1e7+10;
ll p[MAXN],g[MAXN],s[MAXN];
bool vis[MAXN];
int ans;
int n,m,T,pos,tmp;
int prework(int n);
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d",&T);
prework(10000000);
for (int o=1;o<=T;++o){
scanf("%d%d",&n,&m);
if (n>m) swap(n,m);
pos=ans=0;
for (int i=1;i<=n;i=pos+1){
pos=min(n/(n/i),m/(m/i));
ll tmp=(s[n/i]*s[m/i]%MOD*(g[pos]-g[i-1])%MOD)%MOD;
ans=((ll)ans+tmp+MOD)%MOD;
}
printf("%d\n",ans);
}
}
int prework(int n){
g[1]=1; s[1]=1;
int cnt=0;
memset(vis,false,sizeof(vis));
for (int i=2;i<=n;++i){
s[i]=(ll)i*(i+1)/2%MOD;
if (!vis[i]){
g[i]=(i-(ll)i*i%MOD+MOD)%MOD;
p[++cnt]=i;
}
for (int j=1;j<=cnt&&i*p[j]<=n;++j){
vis[i*p[j]]=true;
if (i%p[j])
g[i*p[j]]=g[i]*g[p[j]]%MOD;
else{
g[i*p[j]]=g[i]*p[j]%MOD;
break;
}
}
}
for (int i=1;i<=n;++i)
g[i]=(g[i]+g[i-1])%MOD;
}
【BZOJ2693】jzptab的更多相关文章
- 【BZOJ2693】jzptab(莫比乌斯反演)
[BZOJ2693]jzptab(莫比乌斯反演) 题面 讨厌权限题,只能跑到别的OJ上交 和这题是一样的 多组数据 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 前 ...
- 【BZOJ2693】jzptab & 【BZOJ2154】Crash的数字表格
题目 弱化版题目的传送门([BZOJ2154]Crash的数字表格) 加强版题目的传送门([BZOJ2693]jzptab) 思路&解法 题目是要求: \(\sum\limits_{i = 1 ...
- 【BZOJ2693】jzptab [莫比乌斯反演]
jzptab Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 求 Input 第一行一个 ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- 【BZOJ2693】jzptab (莫比乌斯反演)
Description 给你$n$,$m$,求 $\sum^n_{i=1} \sum^m_{j=1} \ lcm(x,y)$ 答案对$100000009$取模. 多组数据. Input 第一行有一个正 ...
- 【BZOJ】【2693】JZPTAB
莫比乌斯反演 PoPoQQQ讲义第5题,是BZOJ 2154的升级版(多次询问) 题解:http://blog.csdn.net/popoqqq/article/details/42078725 WA ...
- 【BZOJ 2693】jzptab(莫比乌斯+分块)
2693: jzptab Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample I ...
- 【BZOJ】2693: jzptab 莫比乌斯反演
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...
- Python高手之路【六】python基础之字符串格式化
Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...
随机推荐
- 织梦使用if判断某个字段是否为空
织梦如何使用if判断某个字段是否为空呢?我们以文章页调用文章摘要为例: 使用if语句判断摘要是否为空,如果有摘要就显示摘要模块,如果没有就不显示 {dede:field.description run ...
- 【学习笔记】Struts2 类型转换
为什么需要类型转换 在基于HTTP协议的Web应用中 客户端请求的所有内容(表单中提交的内容等)都以文本编码的方式传输到服务器端但服务器端的编程语言(如Java)有着丰富的数据类型 如 int boo ...
- Servlet中文乱码问题解决办法
首先对于源jsp网站和servlet里面的字符集要一样,一般支持中文的字符集为UTF-8最好采用这个字符集(除此之外还有gb2312); 对于源jsp文件的代码中需要设置 设置你的page里面的字符集 ...
- 基于数据形式说明杜兰特的技术特点的分析(含Python实现讲解部分)
---恢复内容开始--- 注: 本博文系原创,转载请标明原处. 题外话:春节过后,回到学校无所事事,感觉整个人都生锈一般,没什么动力,姑且称为"春节后遗症".在科赛官网得到关于NB ...
- ACdream 1068
我没有用二分法,直接构造最小数,既然题目保证答案一定存在那么与上界无关. 如给定S=16,它能构成的最小数为79,尽量用9补位,最高位为S%9.如果构造的数大于下界A,那么直接输出,因为这是S能构成的 ...
- nyoj 取石子(七) 环形博弈
手推前几个可以知道规律:n>2时是P态,n<=2时是N态. 注意:石子拿去后,剩下的石子是分散的. AC代码 #include <cstdio> #include <cm ...
- Docker mongodb 3.4 分片 一主 一副 一仲 鉴权集群部署.
非docker部署 为了避免过分冗余,并且在主节点挂了,还能顺利自动提升,所以加入仲裁节点 为什么要用docker部署,因为之前直接在虚拟机启动10个mongod 进程.多线程并发测试的时候,mong ...
- Swagger2 Oauth2.0 令牌 请求头
@EnableSwagger2 @Bean public Docket createRestApi() { ParameterBuilder tokenPar = new ParameterBuild ...
- 有状态InheritableThreadLocal 配合 JDK8 ,异步方法调用
我们可以把一个类的作用域注解为 @Scope(scopeName = WebApplicationContext.SCOPE_SESSION, proxyMode = ScopedProxyMode. ...
- eclipse hadoop1.2.0配置及wordcount运行
"error: failure to login"问题 http://www.cnblogs.com/xia520pi/archive/2012/05/20/2510723.htm ...