【BZOJ1968】约数研究(数论)
【BZOJ1968】约数研究(数论)
题面
题解
傻逼题
\(NOIP\) \(T1\)难度
不会做的话您可以退役
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
int n;
long long ans;
int main()
{
cin>>n;
for(int i=1;i<=n;++i)
ans+=n/i;
cout<<ans<<endl;
return 0;
}
【BZOJ1968】约数研究(数论)的更多相关文章
- BZOJ-1968 COMMON 约数研究 数论+奇怪的姿势
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1513 Solved: 1154 [Submit] ...
- 洛谷P1403 [AHOI2005] 约数研究 [数论分块]
题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...
- BZOJ1968 [Ahoi2005]COMMON 约数研究 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1968 题意概括 求 ΣF(i) (1<=i<=n)N<=1000000 F( ...
- bzoj1968 约数研究
题意 令\(f(i)\)表示\(i\)的约数个数,求\(\Sigma^n_{i=1}f(i)\). 做法 我们直接算每个数的贡献,问题可以转化成每个数在\(1\)到\(n\)中有多少个倍数,累加答案. ...
- 洛谷 - P1403 - 约数研究 - 数论
https://www.luogu.org/problemnew/show/P1403 可以直接用线性筛约数个数求出来,但实际上n以内i的倍数的个数为n/i的下整,要求的其实是 $$\sum\limi ...
- B1968 [Ahoi2005]COMMON 约数研究 数论
大水题,一分钟就做完了...直接枚举1~n就行了,然后在n中判断出现多少次. 题干: Description Input 只有一行一个整数 N(0 < N < 1000000). Outp ...
- BZOJ 1968_P1403 [AHOI2005]约数研究--p2260bzoj2956-模积和∑----信息学中的数论分块
第一部分 P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一 ...
- bzoj千题计划170:bzoj1968: [Ahoi2005]COMMON 约数研究
http://www.lydsy.com/JudgeOnline/problem.php?id=1968 换个角度 一个数可以成为几个数的约数 #include<cstdio> #incl ...
- 【BZOJ】【1968】【AHOI2005】COMMON 约数研究
数论 原谅我这么傻逼的题都不会做…… 或许写成数学公式的形式比较容易想到解法? $$ans=\sum_{i=1}^n \sum_{d|i} 1$$ ……是不是感觉很水呀……是吧……改成先枚举d再枚举 ...
随机推荐
- ubuntu 开发板ping通虚拟机挂载nfs服务器
先.nfs服务配置1.设置开发板ip ,同一网段2.开发板上操作:ifconfig eth0 192.168.1.203.测试是否能够ping通:ping 192.168.1.194.测试开发板ip是 ...
- 读书共享 Primer Plus C-part 9
第十二章 存储类.链接和内存管理 针对代码块中的static变量做如下范本 #include ...
- RTLabel 的简单使用
RTLabel 基于富文本的格式,适用于iOS,类似HTML的标记. RTLabel 基于UILabel类的拓展,能够支持Html标记的富文本显示,它是基于Core Text,因此也支持Core Te ...
- [HEOI2016]求和 sum
[HEOI2016]求和 sum 标签: NTT cdq分治 多项式求逆 第二类斯特林数 Description 求\[\sum_{i=0}^n\sum_{j=0}^i S(i,j)×2^j×(j!) ...
- 我的2017年终总结(PF项目框架设计心得分享 1.0rc new)
一晃眼又过去了一年,在这一年里尽管有许多不如意的事,却阻挡不了我前进的脚步.先用一句话来总结去年一年的状态,那就是“无休无止的忙碌”.而这样的忙碌状态对我来说是不可取的,因为匮乏的忙碌只能让头脑处于一 ...
- CENTOS6.6下redis3.2集群搭建
本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn [参考:]http://blog.csdn.net/zhu_tian ...
- TzObjectInspector 一例
TzObjectInspector Github上的一个开源组件!可以做到类似Delphi IDE属性,事件面板的样式!作者持续更新中... 看起来是这个样子: 这个东西用起来并不像想象的那样可以直接 ...
- PHP中::的使用
访问静态变量,静态属性,const修饰的变量.
- hdu 1207 四柱汉诺塔
递推,汉诺塔I的变形. 这题真心没想到正确解法,越想越迷糊.这题看了别人题解过得,以后还是自己多想想,脚步太快并非好事. 贴上分析: 分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]= ...
- LOJ6277~6285 数列分块入门
Portals 分块需注意的问题 数组大小应为,因为最后一个块可能会超出的范围. 当操作的区间在一个块内时,要特判成暴力修改. 要清楚什么时候应该+tag[t] 数列分块入门 1 给出一个长为的数列, ...