python中使用了pandas的一些操作,特此记录下来:

生成DataFrame

import pandas as pd

data = pd.DataFrame({
'v_id': ["v_1", 'v_2'],
'label': ["a,b", 'e,f,g'],
})
print(data)

得到结果为:

   label v_id
0 a,b v_1
1 e,f,g v_2

按照逗号分隔并拼接

import pandas as pd

data = pd.DataFrame({
'v_id': ["v_1", 'v_2'],
'label': ["a,b", 'e,f,g'],
})
df = data.drop('label', axis=1).join(data['label'].str.split(',', expand=True).stack().reset_index(level=1, drop=True).rename('label'))
print(df)

得到结果为:

  v_id label
0 v_1 a
0 v_1 b
1 v_2 e
1 v_2 f
1 v_2 g

筛选符合条件的行

import pandas as pd

data = pd.DataFrame({
'v_id': ["v_1", 'v_1', "v_2", "v_2","v_2"],
'label': ["a", 'b', "e", "f", "g"],
})
target_label = data.loc[data['label'].isin(["e", "f"])]
print(target_label)

得到结果为:

  v_id label
1 v_2 e
1 v_2 f

筛选不符合条件的行

import pandas as pd

data = pd.DataFrame({
'v_id': ["v_1", 'v_1', "v_2", "v_2","v_2"],
'label': ["a", 'b', "e", "f", "g"],
'num': [1, 2, 3, 4, 5],
}) other_label1 = data[~data['label'].isin(["f", "g"])]
print(other_label1) other_label2 = data.query("num<=3 & label!='b'")
print(other_label2)

得到结果为:

  v_id label
0 v_1 a
0 v_1 b
1 v_2 e label num v_id
0 a 1 v_1
2 e 3 v_2

替换某一列的值

import pandas as pd

data = pd.DataFrame({
'v_id': ["v_1", 'v_1', "v_2", "v_2","v_2"],
'label': ["a", 'b', "e", "f", "g"],
}) df = data.copy()
df.loc[df["label"] != "", 'label'] = "1"
print(df)

得到结果为:

  v_id label
0 v_1 1
0 v_1 1
1 v_2 1
1 v_2 1
1 v_2 1

取某一列转换成list

import pandas as pd

data = pd.DataFrame({
'v_id': ["v_1", 'v_1', "v_2", "v_2","v_2"],
'label': ["a", 'b', "e", "f", "g"],
})
print(data["label"].values.tolist())

得到结果为:

['a', 'b', 'e', 'f', 'g']

按照某一列去重

import pandas as pd

data = pd.DataFrame({
'v_id': ["v_1", 'v_1', "v_2", "v_2","v_2"],
'label': ["a", 'b', "e", "f", "g"],
})
print(data.drop_duplicates(subset=['v_id']))

得到结果为:

  v_id label
0 v_1 a
1 v_2 e

复制dataframe并拼接

data = pd.DataFrame({
'v_id': ["v_1", 'v_1', "v_2", "v_2","v_2"],
'label': ["a", 'b', "e", "f", "g"],
}) data_copy = data.copy()
times = 2
for i in range(times):
data_copy = pd.concat([data_copy,data])
print(data_copy)

得到结果为:

  v_id label
0 v_1 a
0 v_1 b
1 v_2 e
1 v_2 f
1 v_2 g
0 v_1 a
0 v_1 b
1 v_2 e
1 v_2 f
1 v_2 g
0 v_1 a
0 v_1 b
1 v_2 e
1 v_2 f
1 v_2 g

更改某一列类型

data = pd.DataFrame({
'v_id': ["v_1", 'v_1', "v_2", "v_2","v_2"],
'label': ["a", 'b', "e", "f", "g"],
'num': [1.0, 2.0, 3.0, 4.0, 5.0],
})
data["num"] = data[["num"]].astype(int)
print(data)

得到结果为:

  label  num v_id
0 a 1 v_1
1 b 2 v_1
2 e 3 v_2
3 f 4 v_2
4 g 5 v_2

pandas操作的更多相关文章

  1. pandas操作行集锦

    pandas移花接木 数据准备两表: 我们接下来要进行的操作: 增 将两表进行合并 # 把两张表合并,但是这样有问题,索引会重复的进行0-19 students = page_001.append(p ...

  2. pandas操作,感觉不错,复制过来的

    整理pandas操作 本文原创,转载请标识出处: http://www.cnblogs.com/xiaoxuebiye/p/7223774.html 导入数据: pd.read_csv(filenam ...

  3. Python之Pandas操作csv文件dataframe

    # -*- coding: utf-8 -*- # author:baoshan import pandas as pd def main(): aqi_data = pd.read_csv('chi ...

  4. Python Pandas操作Excel

    Python Pandas操作Excel 前情提要 ☟ 本章使用的 Python3.6 Pandas==0.25.3 项目中需要用到excel的文件字段太多 考虑到后续字段命名的变动以及中文/英文/日 ...

  5. Pandas 操作

    一.Series的创建: pd.Series([ 数据 ]) In [17]: import pandas as pd In [18]: import numpy as np In [19]: s = ...

  6. 整理pandas操作

    本文原创,转载请标识出处: http://www.cnblogs.com/xiaoxuebiye/p/7223774.html 导入数据: pd.read_csv(filename):从CSV文件导入 ...

  7. Python openpyxl、pandas操作Excel方法简介与具体实例

    本篇重点讲解windows系统下 Python3.5中第三方excel操作库-openpyxl: 其实Python第三方库有很多可以操作Excel,如:xlrd,xlwt,xlwings甚至注明的数据 ...

  8. pandas操作速查表

    准备工作 import numpy as np import pandas as pd 倒入文件或创建一个数据表 df = pd.DataFrame(pd.read_csv('name.csv',he ...

  9. Pandas操作excel

    读取excel:Pandas库read_excel()参数详解 pandas.read_excel(io,sheet_name = 0,header = 0,names = None,index_co ...

随机推荐

  1. jQuery学习之旅 Item8 DOM事件操作

    1.jquery页面载入事件 1.传统加载事件 <body onload="函数名()"> 页面全部html和css代码加载完成之后再调用指定的onload函数 win ...

  2. linxu安装SNMP

    http://wiki.jiankongbao.com/doku.php/%E6%96%87%E6%A1%A3:%E5%AE%89%E5%85%A8%E6%8C%87%E5%BC%95#linux_s ...

  3. 基于 HTML5 OpenLayers3 实现 GIS 电信资源管理系统

    前言 通过结合 HTML5 和 OpenLayers 可以组合成非常棒的一个电信地图网络拓扑图的应用,形成的效果可以用来作为电信资源管理系统,美食定位分享软件,片区找房,绘制铁轨线路等等,各个领域都能 ...

  4. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

  5. BZOJ_2809_[Apio2012]dispatching_可并堆

    BZOJ_2809_[Apio2012]dispatching_可并堆 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称 ...

  6. BZOJ_2223_[Coci 2009]PATULJCI_主席树

    BZOJ_2223_[Coci 2009]PATULJCI_主席树 Description Input 10 3 1 2 1 2 1 2 3 2 3 3 8 1 2 1 3 1 4 1 5 2 5 2 ...

  7. linux学习笔记基础篇(一)

    一.IP操作 1.临时修改IP ,执行命令  ifconfig  网卡名称  新ip :例如 ifconfg  nescc 192.168.1.110 ,重启失效 2.重启网络 ,执行命令 syste ...

  8. STM32基于固件库新建MDK工程模板(精简版)

    上个博文理论讲解的东西太多,太复杂,这里把所有步骤全部贴出 1.新建一个工程文件夹LED 2.LED文件夹下建立如下文件夹 3.Project –>New Uvision Project 到US ...

  9. 基于SpringBoot从零构建博客网站 - 整合lombok和mybatis-plus提高开发效率

    在上一章节中<技术选型和整合开发环境>,确定了开发的技术,但是如果直接这样用的话,可能开发效率会不高,为了提高开发的效率,这里再整合lombok和mybatis-plus两个组件. 1.l ...

  10. Haskell学习-monad

    原文地址:Haskell学习-monad 什么是Monad Haskell是一门纯函数式的语言,纯函数的优点是安全可靠.函数输出完全取决于输入,不存在任何隐式依赖,它的存在如同数学公式般完美无缺.可是 ...