classification问题和regression问题类似,区别在于y值是一个离散值,例如binary classification,y值只取0或1。

方法来自Andrew Ng的Machine Learning课件的note1的PartII,Classification and logsitic regression.

实验表明,通过多次迭代,能够最大化Likehood,使得分类有效,实验数据为人工构建,没有实际物理意义,matrix的第一列为x0,取常数1,第二列为区分列,第三列,第四列为非区分列,最后对预测起到主导地位的参数是theta[0]和theta[1]。

  1. #include "stdio.h"
  2. #include "math.h"
  3. double matrix[6][4]={{1,47,76,24}, //include x0=1
  4. {1,46,77,23},
  5. {1,48,74,22},
  6. {1,34,76,21},
  7. {1,35,75,24},
  8. {1,34,77,25},
  9. };
  10. double result[]={1,1,1,0,0,0};
  11. double theta[]={1,1,1,1}; // include theta0
  12. double function_g(double x)
  13. {
  14. double ex = pow(2.718281828,x);
  15. return ex/(1+ex);
  16. }
  17. int main(void)
  18. {
  19. double likelyhood = 0.0;
  20. float sum=0.0;
  21. for(int j = 0;j<6;++j)
  22. {
  23. double xi = 0.0;
  24. for(int k=0;k<4;++k)
  25. {
  26. xi += matrix[j][k]*theta[k];
  27. }
  28. printf("sample %d,%f\n",j,function_g(xi));
  29. sum += result[j]*log(function_g(xi)) + (1-result[j])*log(1-function_g(xi)) ;
  30. }
  31. printf("%f\n",sum);
  32. for(int i =0 ;i<1000;++i)
  33. {
  34. double error_sum=0.0;
  35. int j=i%6;
  36. {
  37. double h = 0.0;
  38. for(int k=0;k<4;++k)
  39. {
  40. h += matrix[j][k]*theta[k];
  41. }
  42. error_sum = result[j]-function_g(h);
  43. for(int k=0;k<4;++k)
  44. {
  45. theta[k] = theta[k]+0.001*(error_sum)*matrix[j][k];
  46. }
  47. }
  48. printf("theta now:%f,%f,%f,%f\n",theta[0],theta[1],theta[2],theta[3]);
  49. float sum=0.0;
  50. for(int j = 0;j<6;++j)
  51. {
  52. double xi = 0.0;
  53. for(int k=0;k<4;++k)
  54. {
  55. xi += matrix[j][k]*theta[k];
  56. }
  57. printf("sample output now: %d,%f\n",j,function_g(xi));
  58. sum += result[j]*log(function_g(xi)) + (1-result[j])*log(1-function_g(xi)) ;
  59. }
  60. printf("maximize the log likelihood now:%f\n",sum);
  61. printf("************************************\n");
  62. }
  63. return 0;
  64. }

Logistic Regression求解classification问题的更多相关文章

  1. Logistic Regression and Classification

    分类(Classification)与回归都属于监督学习,两者的唯一区别在于,前者要预测的输出变量\(y\)只能取离散值,而后者的输出变量是连续的.这些离散的输出变量在分类问题中通常称之为标签(Lab ...

  2. 使用sklearn和caffe进行逻辑回归 | Brewing Logistic Regression then Going Deeper

    原文首发于个人博客https://kezunlin.me/post/c50b0018/,欢迎阅读! Brewing Logistic Regression then Going Deeper. Bre ...

  3. More 3D Graphics (rgl) for Classification with Local Logistic Regression and Kernel Density Estimates (from The Elements of Statistical Learning)(转)

    This post builds on a previous post, but can be read and understood independently. As part of my cou ...

  4. Some 3D Graphics (rgl) for Classification with Splines and Logistic Regression (from The Elements of Statistical Learning)(转)

    This semester I'm teaching from Hastie, Tibshirani, and Friedman's book, The Elements of Statistical ...

  5. 李宏毅机器学习笔记3:Classification、Logistic Regression

    李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...

  6. 机器学习理论基础学习3.3--- Linear classification 线性分类之logistic regression(基于经验风险最小化)

    一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出 ...

  7. Logistic Regression Using Gradient Descent -- Binary Classification 代码实现

    1. 原理 Cost function Theta 2. Python # -*- coding:utf8 -*- import numpy as np import matplotlib.pyplo ...

  8. Classification week2: logistic regression classifier 笔记

    华盛顿大学 machine learning: Classification 笔记. linear classifier 线性分类器 多项式: Logistic regression & 概率 ...

  9. Classification and logistic regression

    logistic 回归 1.问题: 在上面讨论回归问题时.讨论的结果都是连续类型.但假设要求做分类呢?即讨论结果为离散型的值. 2.解答: 假设: 当中: g(z)的图形例如以下: 由此可知:当hθ( ...

随机推荐

  1. Android 内置群组,联系人

    这样一个需求,手机第一次启动的时候,需要内置一个群组,并且里面有给定的联系人信息, 本来打算写双进程守护的,结果昨天接到一个这样的任务,就先把它做了,发现里面有些操作数据库的东西还是值得看一下. 首先 ...

  2. React Native自定义导航条

    Navigator和NavigatorIOS 在开发中,需要实现多个界面的切换,这时候就需要一个导航控制器来进行各种效果的切换.在React Native中RN为我们提供了两个组件:Navigator ...

  3. 【伯乐在线】HashMap的工作原理

    本文由 ImportNew - 唐小娟 翻译自 Javarevisited.欢迎加入翻译小组.转载请见文末要求. HashMap的工作原理是近年来常见的Java面试题.几乎每个Java程序员都知道Ha ...

  4. Spring+EhCache缓存实例(详细讲解+源码下载)

    一.ehcahe的介绍 EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认的CacheProvider.Ehcache是一种广泛使用的开源Java分布式 ...

  5. 安卓开发:简单的登陆跳转_APK实现直接跳转到本CSDN博客

    最近在开始接触Android APP开发,有了一点java基础之后,安卓代码确实看起来就没有那么难了,可以跟着书上把例程敲一遍,然后熟能生巧可以应用起来,现在写了一个简单的APP,实现的是Edit编辑 ...

  6. 安卓2.x的版本使用4.x的主题

    现在,还有大部分安卓开发者在开发安卓APP时使用的是2.x的SDK版本,为了兼容2.x的手机这本倒无可厚非,但最令人头痛的就是2.x版本的主题是在太丑了,这是安卓刚推出时只考虑到了实用,并没考虑到美观 ...

  7. Sybase - tempdb

    前沿:换了新公司,公司使用的Sybase数据库.现在开始学习Sybase数据库了.希望未来的几个月能对Sybase由浅入深的了解和研究. Tempdb的作用 sybase server端内部使用 排序 ...

  8. 后端分布式系列:分布式存储-HDFS DataNode 设计实现解析

    前文分析了 NameNode,本文进一步解析 DataNode 的设计和实现要点. 文件存储 DataNode 正如其名是负责存储文件数据的节点.HDFS 中文件的存储方式是将文件按块(block)切 ...

  9. J2EE进阶(十一)SSH框架整合常见问题汇总(二)

    org.hibernate.PropertyAccessException: IllegalArgumentException occurred while calling setter of cn. ...

  10. UNIX网络编程——套接字选项(心跳检测、绑定地址复用)

    /* 设置套接字选项周期性消息检测连通性 心跳包. 心博.主要用于长连接. * 参数:套接字, 1或0开启, 首次间隔时间, 两次间隔时间, 断开次数 */ void setKeepAlive( in ...