classification问题和regression问题类似,区别在于y值是一个离散值,例如binary classification,y值只取0或1。

方法来自Andrew Ng的Machine Learning课件的note1的PartII,Classification and logsitic regression.

实验表明,通过多次迭代,能够最大化Likehood,使得分类有效,实验数据为人工构建,没有实际物理意义,matrix的第一列为x0,取常数1,第二列为区分列,第三列,第四列为非区分列,最后对预测起到主导地位的参数是theta[0]和theta[1]。

  1. #include "stdio.h"
  2. #include "math.h"
  3. double matrix[6][4]={{1,47,76,24}, //include x0=1
  4. {1,46,77,23},
  5. {1,48,74,22},
  6. {1,34,76,21},
  7. {1,35,75,24},
  8. {1,34,77,25},
  9. };
  10. double result[]={1,1,1,0,0,0};
  11. double theta[]={1,1,1,1}; // include theta0
  12. double function_g(double x)
  13. {
  14. double ex = pow(2.718281828,x);
  15. return ex/(1+ex);
  16. }
  17. int main(void)
  18. {
  19. double likelyhood = 0.0;
  20. float sum=0.0;
  21. for(int j = 0;j<6;++j)
  22. {
  23. double xi = 0.0;
  24. for(int k=0;k<4;++k)
  25. {
  26. xi += matrix[j][k]*theta[k];
  27. }
  28. printf("sample %d,%f\n",j,function_g(xi));
  29. sum += result[j]*log(function_g(xi)) + (1-result[j])*log(1-function_g(xi)) ;
  30. }
  31. printf("%f\n",sum);
  32. for(int i =0 ;i<1000;++i)
  33. {
  34. double error_sum=0.0;
  35. int j=i%6;
  36. {
  37. double h = 0.0;
  38. for(int k=0;k<4;++k)
  39. {
  40. h += matrix[j][k]*theta[k];
  41. }
  42. error_sum = result[j]-function_g(h);
  43. for(int k=0;k<4;++k)
  44. {
  45. theta[k] = theta[k]+0.001*(error_sum)*matrix[j][k];
  46. }
  47. }
  48. printf("theta now:%f,%f,%f,%f\n",theta[0],theta[1],theta[2],theta[3]);
  49. float sum=0.0;
  50. for(int j = 0;j<6;++j)
  51. {
  52. double xi = 0.0;
  53. for(int k=0;k<4;++k)
  54. {
  55. xi += matrix[j][k]*theta[k];
  56. }
  57. printf("sample output now: %d,%f\n",j,function_g(xi));
  58. sum += result[j]*log(function_g(xi)) + (1-result[j])*log(1-function_g(xi)) ;
  59. }
  60. printf("maximize the log likelihood now:%f\n",sum);
  61. printf("************************************\n");
  62. }
  63. return 0;
  64. }

Logistic Regression求解classification问题的更多相关文章

  1. Logistic Regression and Classification

    分类(Classification)与回归都属于监督学习,两者的唯一区别在于,前者要预测的输出变量\(y\)只能取离散值,而后者的输出变量是连续的.这些离散的输出变量在分类问题中通常称之为标签(Lab ...

  2. 使用sklearn和caffe进行逻辑回归 | Brewing Logistic Regression then Going Deeper

    原文首发于个人博客https://kezunlin.me/post/c50b0018/,欢迎阅读! Brewing Logistic Regression then Going Deeper. Bre ...

  3. More 3D Graphics (rgl) for Classification with Local Logistic Regression and Kernel Density Estimates (from The Elements of Statistical Learning)(转)

    This post builds on a previous post, but can be read and understood independently. As part of my cou ...

  4. Some 3D Graphics (rgl) for Classification with Splines and Logistic Regression (from The Elements of Statistical Learning)(转)

    This semester I'm teaching from Hastie, Tibshirani, and Friedman's book, The Elements of Statistical ...

  5. 李宏毅机器学习笔记3:Classification、Logistic Regression

    李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...

  6. 机器学习理论基础学习3.3--- Linear classification 线性分类之logistic regression(基于经验风险最小化)

    一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出 ...

  7. Logistic Regression Using Gradient Descent -- Binary Classification 代码实现

    1. 原理 Cost function Theta 2. Python # -*- coding:utf8 -*- import numpy as np import matplotlib.pyplo ...

  8. Classification week2: logistic regression classifier 笔记

    华盛顿大学 machine learning: Classification 笔记. linear classifier 线性分类器 多项式: Logistic regression & 概率 ...

  9. Classification and logistic regression

    logistic 回归 1.问题: 在上面讨论回归问题时.讨论的结果都是连续类型.但假设要求做分类呢?即讨论结果为离散型的值. 2.解答: 假设: 当中: g(z)的图形例如以下: 由此可知:当hθ( ...

随机推荐

  1. JVM性能参数调优实践,不会执行Full GC,网站无停滞

    原文来自:http://bbs.csdn.net/topics/310110257 本文只做整理记录,供个人学习. 1 JVM参数调优是个很头痛的问题,设置的不好,JVM不断执行Full GC,导致整 ...

  2. Objective-C构造方法

    Objective-C构造方法 构造方法:用来初始化的方法 创建对象的原理 之前我们创建对象的方式一直是使用[Xxx new] 但是使用 new 创建的对象,都是给我们默认做了初始化的. 有的时候,我 ...

  3. [Python]查看python路径以及安装包的路径

    特别是linux系统,装了多个python,有时候找不到python的绝对路径,有时候装了个django,又找不到django安装到哪里了..当然查看的方法有很多种,这里列出几种,供没有经验的人参考下 ...

  4. actionbar完全解析(一)

    Action Bar是一种新増的导航栏功能,在Android 3.0之后加入到系统的API当中,它标识了用户当前操作界面的位置,并提供了额外的用户动作.界面导航等功能.使用ActionBar的好处是, ...

  5. [struts2学习笔记] 第五节 编写struts2的action代码

    本文地址:http://blog.csdn.net/sushengmiyan/article/details/40479299 官方文档: http://struts.apache.org/relea ...

  6. 指令汇B新闻客户端开发(五) ShareSdk的使用

    ShareSdk是一个分享按钮的开源框架,我们首先可以去mob的官网下载这个控件.mob官网,然后找到sdk下载那一栏, 下载下来之后点击这个.jar文件就会有一个弹窗,填写自己的应用包名和要哪些分享 ...

  7. 6.QT信号和槽

     新建项目SignalAndSlot项目 编写代码如下: mysignal.h #ifndef MYSIGNAL_H #define MYSIGNAL_H   #include <QObje ...

  8. HttpClient4.5.2调用示例(转载+原创)

    操作HttpClient时的一个工具类,使用是HttpClient4.5.2 package com.xxxx.charactercheck.utils; import java.io.File; i ...

  9. Java:使用匿名内部类在方法内部定义并启动线程

    下面的代码展示了在一个方法中,通过匿名内部类定义一个Thread,并Override它的run()方法,之后直接启动该线程. 这样的代码可用于在一个类内部通过另起线程来执行一个支线任务,一般这样的任务 ...

  10. Mysql group by语句的优化

    默认情况下,MySQL排序所有GROUP BY col1, col2, ....,查询的方法如同在查询中指定ORDER BY  col1, col2, ....如果显式包括一个包含相同的列的ORDER ...