python数据挖掘_Json结构分析
json是一种轻量级的数据交换格式,也可以说是一种配置文件的格式
这种格式的文件是我们在数据处理经常会遇到的
python提供内置的模块json,只需要在使用前导入即可
你可以通过帮助函数查看json的帮助文档
json常用的方法有load、loads、dump以及dumps,这个都属于python初级,我不做过多解释
json可以结合数据库一起使用,在这以后要处理大量数据时非常有用
下面我们正式来利用数据挖掘对json文件进行处理
现在很多网站都运用了Ajax,所以一般很多都是XHR文件
通过
这里我想利用一个地图网站来演示
我们通过浏览器的调试获取了相关url
https://ditu.amap.com/service/poiInfo?id=B001B0IZY1&query_type=IDQ
下面我们通过requests模块中的get方法,模拟浏览器发出的http请求,并返回的到的结果对象
代码如下
# coding=utf-8
__Author__ = "susmote" import requests
url = "https://ditu.amap.com/service/poiInfo?id=B001B0IZY1&query_type=IDQ" resp = requests.get(url)
print(resp.text[0:200])
在终端中运行结果如下
数据已经获取到了,但是为了接下来能使用这些数据,我们需要利用json模块对这些数据进行分析
代码如下
import requests
import json url = "https://ditu.amap.com/service/poiInfo?id=B001B0IZY1&query_type=IDQ" resp = requests.get(url) json_dict = json.loads(resp.text) print(type(json_dict)) print(json_dict.keys())
简单讲一下上面的代码:
导入json模块,然后调用loads方法,将返回的文本作为方法的参数传入
在终端中运行结果如下
可以看出,转换的结果是与json字符串对应的字典,因为type(json_dict)返回的是<class 'dict'>
因为对象是一个字典,所以我们可以调用字典的方法,在这里我们调用的就是keys方法
结果返回三个键,即status、searcOpt、data
下面我们来查看data键里面的数据
import requests
import json url = "https://ditu.amap.com/service/poiInfo?id=B001B0IZY1&query_type=IDQ" resp = requests.get(url) json_dict = json.loads(resp.text) print(json_dict['data'])
下面在终端中运行这一段代码
可以看到里面有很多我们需要的数据,如
不一一标出,通过跟网页显示的相比较,就能清楚哪些是有用的了
下面我们通过代码获取有用的信息,把它清晰的输出
# coding=utf-8
__Author__ = "susmote" import requests
import json url = "https://ditu.amap.com/service/poiInfo?id=B001B0IZY1&query_type=IDQ" resp = requests.get(url) json_dict = json.loads(resp.text) data_dict = json_dict['data'] data_list = data_dict['poi_list'] dis_data = data_list[0] print('城市: ', dis_data['cityname'])
print('名称: ', dis_data['name'])
print('电话: ', dis_data['tel'])
print('区号: ', dis_data['areacode'])
print('地址: ', dis_data['address'])
print('经度: ', dis_data['longitude'])
print('纬度: ', dis_data['latitude'])
因为返回的是一个字典,通过对文件结构的研究,字典中嵌套着列表,列表中又嵌套着字典,通过层层解套,成功获取数据
我这里把步骤分开列出了,所以你会看的更加清楚
下面我们通过终端运行程序,获取我们想要的信息
是不是非常简单了,这个程序可以作为一个模版,获取其他地方的信息时只需要改一个url即可
例如以下几个范例
北京大学
或者是腾讯大厦
数据挖掘是没有尽头的,希望大家多分析数据,找到你想要的数据
我的博客 www.susmote.com
python数据挖掘_Json结构分析的更多相关文章
- Ubuntu系统下创建python数据挖掘虚拟环境
虚拟环境: 虚拟环境是用于创建独立的python环境,允许我们使用不同的python模块和版本,而不混淆. 让我们了解一下产品研发过程中虚拟环境的必要性,在python项目中,显然经常要使用不 ...
- Python数据挖掘和机器学习
-----------------------------2017.8.9--------------------------------- 先占个坑 在接下来的一个半月里(即从现在到十一) 我将结合 ...
- 2019年Python数据挖掘就业前景前瞻
Python语言的崛起让大家对web.爬虫.数据分析.数据挖掘等十分感兴趣.数据挖掘就业前景怎么样?关于这个问题的回答,大家首先要知道什么是数据挖掘.所谓数据挖掘就是指从数据库的大量数据中揭示出隐含的 ...
- Python数据挖掘课程
[Python数据挖掘课程]一.安装Python及爬虫入门介绍[Python数据挖掘课程]二.Kmeans聚类数据分析及Anaconda介绍[Python数据挖掘课程]三.Kmeans聚类代码实现.作 ...
- Python数据挖掘——数据预处理
Python数据挖掘——数据预处理 数据预处理 数据质量 准确性.完整性.一致性.时效性.可信性.可解释性 数据预处理的主要任务 数据清理 数据集成 数据归约 维归约 数值归约 数据变换 规范化 数据 ...
- Python数据挖掘——数据概述
Python数据挖掘——数据概述 数据集由数据对象组成: 数据的基本统计描述 中心趋势度量 均值 中位数 众数 中列数 数据集的最大值和最小值的平均 度量数据分布 极差 最大值与最小值的差 四分位数 ...
- Python数据挖掘——基础知识
Python数据挖掘——基础知识 数据挖掘又称从数据中 挖掘知识.知识提取.数据/模式分析 即为:从数据中发现知识的过程 1.数据清理 (消除噪声,删除不一致数据) 2.数据集成 (多种数据源 组合在 ...
- Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析
Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析 今天主要讲述的内容是关于决策树的知识,主要包括以下内容:1.分类及决策树算法介绍2.鸢尾花卉数据集介绍3.决策树实现鸢尾数据集分析.希望这篇 ...
- python数据挖掘领域工具包
原文:http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Sc ...
随机推荐
- Java学习日记——基本数据类型
基本数据类型: byte 1个字节 正负都能表示2的8-1次方 -128~127(包括0) short 2个字节 2的16-1次 整数类型 (默认为int类型) int 4个字节 2的32-1次方 l ...
- 团队项目7——团队冲刺(beta版本)
beta版本冲刺计划安排:http://www.cnblogs.com/ricardoCYF/p/8018413.html 12.06:http://www.cnblogs.com/ricardoCY ...
- 201621123035 《Java程序设计》第1周学习总结
1.本周学习总结 本周学习内容:Java平台概论.认识JDK规范与操作.了解JVM.JRE与JDK.撰写Java原始码.path是什么 关键词:JVM.JRE.JDK 联系:JVM是Java虚拟机的缩 ...
- Raid5两块硬盘掉线可以恢复数据吗_raid数据恢复案例分享
本案例中发生故障的存储类型是HP P2000,虚拟化平台为vmware exsi,共有10块硬盘组成raid5(硬盘容量为1t,其中6号盘是热备盘),由于某些故障导致阵列中两块硬盘亮黄灯掉线,硬盘无法 ...
- EasyUI中Tabs添加远程数据的方法。
tabs加载远程数据: $(function () { $("#btnquery").click(function () { if (!$("#tcontent" ...
- Python内置函数(30)——super
英文文档: super([type[, object-or-type]]) Return a proxy object that delegates method calls to a parent ...
- 角落的开发工具集之Vs(Visual Studio)2017插件推荐
因为最近录制视频的缘故,很多朋友都在QQ群留言,或者微信公众号私信我,问我一些工具和一些插件啊,怎么使用的啊?那么今天我忙里偷闲整理一下清单,然后在这里面公布出来. Visual Studio 201 ...
- PHP / Laravel 月刊 #23
最新资讯 Laravel 5.6 中文文档翻译完成,译者 60 人,耗时 10 天 Summer Dingo API 中文文档翻译召集[已完成] Summer 我最喜欢 Laravel 5.6 的三个 ...
- POJ2398【判断点在直线哪一侧+二分查找区间】
题意:同POJ2318 #include<algorithm> #include<cstdio> #include<cstdlib> #include<cst ...
- python 资产管理
python 资产管理 一.Agent 方式 1.这个方法的优点:使用简单,速度快,适合服务器较多场景使用,缺点:服务器比较占资源,性能会变低. 2.使用Agent的前提条件是客户端(服务器)特别多的 ...