For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1.

Now given a string representing n, you should return the smallest good base of n in string format.

Example 1:

  1. Input: "13"
  2. Output: "3"
  3. Explanation: 13 base 3 is 111.

Example 2:

  1. Input: "4681"
  2. Output: "8"
  3. Explanation: 4681 base 8 is 11111.

Example 3:

  1. Input: "1000000000000000000"
  2. Output: "999999999999999999"
  3. Explanation: 1000000000000000000 base 999999999999999999 is 11.

Note:

  1. The range of n is [3, 10^18].
  2. The string representing n is always valid and will not have leading zeros.

这道题让我们求最小的好基数,定义了一个大于等于2的基数k,如果可以把数字n转化为各位都是1的数,那么就称这个基数k是好基数。通过看题目中的三个例子,应该大致可以理解题意了吧。如果我们用k表示基数,m表示转为全1数字的位数,那么数字n就可以拆分为:

n = 1 + k + k^2 + k^3 + ... + k^(m-1)

这是一个等比数列,中学数学的内容吧,利用求和公式可以表示为 n = (k^m - 1) / (k - 1)。我们的目标是求最小的k,那么仔细观察这个式子,在n恒定的情况,k越小则m却大,就是说上面的等式越长越好。下面我们来分析m的取值范围,题目中给了n的范围,是 [3, 10^18]。由于k至少为2,n至少为3,那么肯定至少有两项,则 m>=2。再来看m的上限该如何求?其实也不难,想要m最大,k就要最小,k最小是2,那么m最大只能为 log2(n + 1),数字n用二进制表示的时候可拆分出的项最多。但这道题要求变换后的数各位都是1,那么我们看题目中最后一个例子,可以发现,当 k=n-1 时,一定能变成 11,所以实在找不到更小的情况下就返回 n-1。

下面我们来确定k的范围,由于k至少为2,那么就可以根据下面这个不等式来求k的上限:

n = 1 + k + k^2 + k^3 + ... + k^(m-1) > k^(m-1)

解出 k < n^(1 / (m-1)),其实我们也可以可以通过 n < k^m - 1 来求出k的准确的下限,但由于是二分查找法,下限直接使用2也没啥问题。分析到这里,那么解法应该已经跃然纸上了,我们遍历所有可能的m值,然后利用二分查找法来确定k的值,对每一个k值,我们通过联合m值算出总和 sum,然后跟n来对比即可,参见代码如下:

  1. class Solution {
  2. public:
  3. string smallestGoodBase(string n) {
  4. long long num = stol(n);
  5. for (int i = log(num + ) / log(); i >= ; --i) {
  6. long long left = , right = pow(num, 1.0 / (i - )) + ;
  7. while (left < right) {
  8. long long mid = left + (right - left) / , sum = ;
  9. for (int j = ; j < i; ++j) {
  10. sum = sum * mid + ;
  11. }
  12. if (sum == num) return to_string(mid);
  13. if (sum < num) left = mid + ;
  14. else right = mid;
  15. }
  16. }
  17. return to_string(num - );
  18. }
  19. };

Github 同步地址:

https://github.com/grandyang/leetcode/issues/483

参考资料:

https://leetcode.com/problems/smallest-good-base/

https://leetcode.com/problems/smallest-good-base/discuss/96591/Java-O((logn)2)-binary-search-solution

https://leetcode.com/problems/smallest-good-base/discuss/96593/Concise-C%2B%2B-Binary-Search-solution

https://leetcode.com/problems/smallest-good-base/discuss/96590/3ms-AC-C%2B%2B-long-long-int-%2B-binary-search

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Smallest Good Base 最小的好基数的更多相关文章

  1. [LeetCode] 483. Smallest Good Base 最小的好基数

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  2. [Swift]LeetCode483. 最小好进制 | Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  3. Leetcode 483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  4. 483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  5. Binary Search-483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  6. [LeetCode] Smallest Rectangle Enclosing Black Pixels 包含黑像素的最小矩阵

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  7. [LeetCode] Smallest Range 最小的范围

    You have k lists of sorted integers in ascending order. Find the smallest range that includes at lea ...

  8. [LeetCode] 910. Smallest Range II 最小区间之二

    Given an array A of integers, for each integer A[i] we need to choose either x = -K or x = K, and ad ...

  9. [LeetCode] 908. Smallest Range I 最小区间

    Given an array A of integers, for each integer A[i] we may choose any x with -K <= x <= K, and ...

随机推荐

  1. [poj2152]fire_树形dp

    fire poj-2152 题目大意:给出一颗树,给出两个相邻节点的距离,以及每个节点的接受范围,还有当前节点的代价.我们想要求出覆盖整个图的最小代价. 注释:一个点被覆盖,当且仅当该点有防火站或者这 ...

  2. 剑指Offer-二叉树的下一个结点

    题目描述 给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回.注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针. 思路 分析二叉树的下一个节点,一共有以下情况: 二叉树 ...

  3. 【Spring源码深度解析学习系列】核心类介绍(一)

    一.DefaultListableBeanFactory 首先看一下结构 由图可知XmlBeanFactory继承自DefaultListableBeanFactory,而DefaultListabl ...

  4. SIMD---AVX系列

    AVX全称Advanced Vcetor Extension,是对SSE的后续扩展,主要分为AVX.AVX2.AVX512三种.在目前常见的机器上,大多只支持到AVX系列,因此其他SIMD扩展指令我们 ...

  5. Beta冲刺链接总汇

    Beta冲刺 咸鱼 Beta 冲刺day1 Beta 冲刺day2 Beta 冲刺day3 Beta 冲刺day4 Beta 冲刺day5 Beta 冲刺day6 Beta 冲刺day7 凡事预则立- ...

  6. Basic FIFO Queue

    Queue - 一种线程安全的FIFO实现 Python的Queue模块提供一种适用于多线程编程的FIFO实现.它可用于在生产者(producer)和消费者(consumer)之间线程安全(threa ...

  7. 个人技术博客(alpha)

    APP的权限校验不同于web网页端,web一般使用session记录用户的状态信息,而app则使用token令牌来记录用户信息.有这样一个场景,系统的数据量达到千万级,需要几台服务器部署,当一个用户在 ...

  8. Python-函数-Day4

    1.函数 1.1.集合 主要作用: 去重 关系测试, 交集\差集\并集\反向(对称)差集 a = {1,2,3,4} b ={3,4,5,6} a {1, 2, 3, 4} type(a) <c ...

  9. 25.C++- 泛型编程之函数模板(详解)

    本章学习: 1)初探函数模板 2)深入理解函数模板 3)多参函数模板 4)重载函数和函数模板 当我们想写个Swap()交换函数时,通常这样写: void Swap(int& a, int&am ...

  10. cmd编译运行java

    新建.java结尾的文件 内容 public class hello{ public static void main(String[] args){ System.out.println(" ...