【BZOJ1934】善意的投票(网络流)

题面

Description

幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。 我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?

Input

第一行只有两个整数n,m,保证有2≤n≤300,1≤m≤n(n-1)/2。其中n代表总人数,m代表好朋友的对数。文件第二行有n个整数,第i个整数代表第i个小朋友的意愿,当它为1时表示同意睡觉,当它为0时表示反对睡觉。接下来文件还有m行,每行有两个整数i,j。表示i,j是一对好朋友,我们保证任何两对i,j不会重复。

Output

只需要输出一个整数,即可能的最小冲突数。

Sample Input

3 3

1 0 0

1 2

1 3

3 2

Sample Output

1

HINT

在第一个例子中,所有小朋友都投赞成票就能得到最优解

题解

每个小朋友投同意或者反对

相当于把小朋友们割为两块

那么,考虑最小割

首先,分别将同意和反对的与源点或者汇点连边

如果违反自己意愿,则相当于与这个点割开

同时,每个点与自己的朋友连边

如果割开,相当于与朋友意见不同

最后解决最小割,即求最大流

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 500
#define MAXL 200000
#define INF 20000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w;
}e[MAXL];
int h[MAX],cnt;
int ans,S,T,n,m;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};
h[v]=cnt++;
}
int level[MAX];
int cur[MAX];
bool BFS()
{
memset(level,0,sizeof(level));
level[S]=1;
queue<int> Q;
Q.push(S);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&!level[v])
level[v]=level[u]+1,Q.push(v);
}
}
return level[T];
}
int DFS(int u,int flow)
{
if(flow==0||u==T)return flow;
int ret=0;
for(int &i=cur[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&level[v]==level[u]+1)
{
int dd=DFS(v,min(flow,e[i].w));
flow-=dd;ret+=dd;
e[i].w-=dd;e[i^1].w+=dd;
}
}
return ret;
}
int Dinic()
{
int ret=0;
while(BFS())
{
for(int i=S;i<=T;++i)cur[i]=h[i];
ret+=DFS(S,INF);
}
return ret;
}
int main()
{
memset(h,-1,sizeof(h));
n=read();m=read();
S=0,T=n+1;
for(int i=1;i<=n;++i)
{
int k=read();
if(k)Add(S,i,1);
else Add(i,T,1);
}
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v,1);Add(v,u,1);
}
printf("%d\n",Dinic());
return 0;
}

【BZOJ1934】善意的投票(网络流)的更多相关文章

  1. [洛谷P2057][bzoj1934]善意的投票(最大流)

    题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来 ...

  2. 洛谷$P2057\ [SHOI2007]$ 善意的投票 网络流

    正解:网络流 解题报告: 传送门! $umm$看到每个人要么0要么1就考虑最小割呗,,,? 然后贡献有两种?一种是违背自己的意愿,一种是和朋友的意愿违背了 所以考虑开一排点分别表示每个人,然后$S$表 ...

  3. [bzoj1934]善意的投票

    最小割,考虑最小割就是要将整张图分为两块,本题中就分别表示赞同和不赞同,那么首先一开始赞同的点向S连边,不赞同的点向T连边,如果这些点分到了另一边就要割掉这条边,朋友关系同理,连双向边同样表示分到两边 ...

  4. BZOJ-1934 Vote 善意的投票 最大流+建图

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1551 Solved: 951 [Submit][S ...

  5. 【BZOJ2768】[JLOI2010]冠军调查/【BZOJ1934】[Shoi2007]Vote 善意的投票 最小割

    [BZOJ2768][JLOI2010]冠军调查 Description 一年一度的欧洲足球冠军联赛已经进入了淘汰赛阶段.随着卫冕冠军巴萨罗那的淘汰,英超劲旅切尔西成为了头号热门.新浪体育最近在吉林教 ...

  6. bzoj1934 Vote 善意的投票 最小割(最大匹配)

    题目传送门 题目大意:很多小朋友,每个小朋友都有自己的立场,赞成或者反对,如果投了和自己立场不同的票会得到一个能量.又有很多朋友关系,如果一个人和他的一个朋友投的票不同,也会得到一个能量,现在问,通过 ...

  7. [bzoj1934/2768][Shoi2007]Vote 善意的投票_最小割

    Vote 善意的投票 bzoj-1934 Shoi-2007 题目大意:题目链接. 注释:略. 想法: 这是最小割的一个比较基本的模型. 我们将所有当前同意的小朋友连向源点,边权为1.不容易的连向汇点 ...

  8. C++之路进阶——bzoj1934(善意的投票)

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser  hyxzc Logout 捐赠本站 Notice:由于本OJ建立在 ...

  9. bzoj1934: [Shoi2007]Vote 善意的投票

    最大流..建图方式都是玄学啊.. //Dinic是O(n2m)的. #include<cstdio> #include<cstring> #include<cctype& ...

随机推荐

  1. python中的randint,引入模块

    引入模块的方法: from 模块名 import 方法名 范例: from random import randint#使用randint需要加上这句 while True: answer=randi ...

  2. linux下ACE的编译与安装

    1.环境变量的设置vim /etc/profile 2.然后输入export ACE_ROOT=/root/ACE/ACE_wrappers export MPC_ROOT=$ACE_ROOT/MPC ...

  3. cloud9 ide

    https://github.com/tekacs/cloud9 http://www.pjhome.net/article/Javascript/nodeJS_IDE_cloud9.html htt ...

  4. IOS开发之记录用户登陆状态,ios开发用户登陆

    IOS开发之记录用户登陆状态,ios开发用户登陆 上一篇博客中提到了用CoreData来进行数据的持久化,CoreData的配置和使用步骤还是挺复杂的.但熟悉CoreData的使用流程后,CoreDa ...

  5. 置换群、Burnside引理与等价类计数问题

    置换群.Burnside引理与等价类计数问题 标签: 置换群 Burnside引理 置换 说说我对置换的理解,其实就是把一个排列变成另外一个排列.简单来说就是一一映射.而置换群就是置换的集合. 比如\ ...

  6. CEF小白人系列1-认识CEF

    手头上有个项目需要做浏览器的相关功能,评估了几个嵌入式方案最后选定CEF作为开发基础. 在入坑新技术的时候第一选择是去官网学习,这是一个非常好的习惯. CEF官网(请科学上网) https://bit ...

  7. jquery validate 动态增加删除验证规则(转载)

    页面加载完成初始化form validate $("#user_regForm").validate({ errorPlacement: function(error, eleme ...

  8. 分享一个集成在项目中的REST APIs文档框架swagger

    1 为什么是使用swagger? 1-1 当后台开发人员开发好接口,是不是还要重新书写一份接口文档提给前端人员,当然对于程序员最不喜欢的就是书写文档(当然文档是必须的,有利于项目的维护) 1-2 当后 ...

  9. 关于 Java 面试,你应该准备这些知识点

    来源:占小狼, www.jianshu.com/p/1b2f63a45476 马老师说过,员工的离职原因很多,只有两点最真实: 钱,没给到位 心,受委屈了 当然,我是想换个平台,换个方向,想清楚为什么 ...

  10. Mapreuduce实现网络数据包的清洗工作

    处理后的数据可直接放到hive或者mapreduce程序来统计网络数据流的信息,比如当前实现的是比较简单的http的Get请求的统计 第一个mapreduce:将时间.十六进制包头信息提取出来,并放在 ...