业务系统需要什么样的ID生成器
业务系统需要什么样的ID生成器
ID 生成器在微博我们一直叫发号器,微博就是用这样的号来存储,而我微博里讨论的时候也都是以发号器为标签。它的主要目的确如平常大家理解的“为一个分布式系统的数据object产生一个唯一的标识”,但其实在一个真实的系统里可能也可以承担更多的作用。概括起来主要有以下几点:
- 唯一性
- 时间相关
- 粗略有序
- 可反解
- 可制造
下面我会分别讲每个作用后面的考虑和权衡,也会对比介绍一下业界已知的几种 ID 设计。
要唯一性,是否需要全局唯一?
说起全局唯一,通常大家都会在想到发号器服务,分布式的通常需要更大空间,中心式的则需要在一个合适的地方在会聚。这就可能涉及到锁,而锁意味着成本和性能的下降。所以当前的系统是否需要全局的唯一性,就是一个需要考虑的问题。
比如在通讯系统里,聊天消息可能就未必需要全局,因为一条消息只是某一个人发出,系统只要保证一个人维度的唯一性即可。本质上而言,这里利用了用户 ID 的唯一性,因为唯一性是可以依赖的,通常我们设计系统也都是基于类似的性质,比如后面降到的使用时间唯一性的方式。
用时间来做什么?千万年太久,只争朝夕?
前面说到唯一性可以依赖,我们需要选择的是依赖什么。通常的做法可以选择数据库自增,这在很多数据库里都是可以满足ACID 的操作。但是用数据库有个缺点,就是数据库有性能问题,在多机房情况下也很难处理。当然,你可以通过调整自增的步长来设计,但对于一个发号器而言,操作和维护都略重了。
而时间是天然唯一的,因此也是很多设计的选择。但对于一个8Byte的 ID 而言,时间并没有那么多。你如果精确到秒级别,三十年都要使用30bit,到毫秒级则要再增加10bit,你也只剩下20bit 可以做其他事情了。之所以在8Byte 上捣鼓,因为8Byte 是一个Long,不管在处理器和编译器还是语言层面,都是可以更好地被处理。
然而三十年够么?对于一个人来说,可能不够,但对一个系统而言,可能足够。我们经常开玩笑,互联网里能活三十年的系统有多少呢?三十年过去,你的系统可能都被重写 N 遍了。这样的信心同样来自于摩尔定律,三十年后,计算性能早就提高了上千倍,到时候更多Byte 都不会是问题了。
粗略有多粗略,秒还是毫秒?
每秒一个或者每毫秒一个ID明显是不够的,刚才说到还有20bit 可以做其他事情,就包括一个SequenceID。如果要达到精确的有序,就要对 Sequence 进行并发控制,性能上肯定会打折。所以经常会有的一个选择就是,在这个秒的级别上不再保证顺序,而整个 ID 则只保证时间上的有序。后一秒的 ID肯定比前一秒的大,但同一秒内可能后取的ID比前面的号小。这在使用时非常关键,你要理解,系统也要接受才可以。
那时间用秒还是毫秒呢?其实不用毫秒的时候就可以把空出来的10bit 送给 Sequence,但整个ID 的精度就下降了。峰值速度是更现实的考虑。Sequence 的空间决定了峰值的速度,而峰值也就意味着持续的时间不会太久。这方面,每秒100万比每毫秒1000限制更小。
可反解,解开的是什么?
一个 ID 生成之后,就会伴随着信息终身,排错分析的时候,我们需要查验。这时候一个可反解的 ID 可以帮上很多忙,从哪里来的,什么时候出生的。 跟身份证倒有点儿相通了,其实身份证就是一个典型的分布式 ID 生成器。
如果ID 里已经有了时间而且能解开,在存储层面可能不再需要timestamp 一类的字段了。微博的 ID 还有很多业务信息,这个后面会细讲。
可制造,为什么不用UUID?
互联网系统上可用性永远是优先指标。但由于分布式系统的脆弱,网络不稳定或者底层存储系统的不可用,业务系统随时面临着失败。为了给前端更友好的响应,我们需要能尽量容忍失败。比如在存储失败时,可能需要临时导出请求供后续处理,而后续处理时已经离开了当时的时间点,顺序跟其他系统错开了。我们需要制造出这样的ID 以便系统好像一直正常运行一样,可制造的 ID 让你可以控制生产日期(汗,有点儿假冒伪劣的意思了),然后继续下面的处理。
另一个重要场景就是数据清洗。这个属于较少遇到,但并不罕见的情况,可能是原来 ID 设计的不合理,也可能由于底层存储的改变,都可能出现。这样一个可制造的 ID 就会带来很多操作层面的便利。
这也是我们不用 UUID 的一个原因。UUID 标准可以保证在某时某地生成,但如果要控制生成一个特定时间的 UUID,可能需要底层库的改动。经验告诉我们,能在上层解决的问题不要透到下层,这种库的维护成本是非常高的。
设计细节
UUID 就不说了, 其他公开出来的这里说下SnowFlake、Weibo以及 Ticktick 的设计。
SnowFlake
41bit留给毫秒时间,10bit给MachineID,也就是机器要预先配置,剩下12位留给Sequence。代码虽然露出来了,但其实已经不可用了,据说是内部改造中。
Weibo
微博使用了秒级的时间,用了30bit,Sequence 用了15位,理论上可以搞定3.2w/s的速度。用4bit来区分IDC,也就是可以支持16个 IDC,对于核心机房来说够了。剩下的有2bit 用来区分业务,由于当前发号服务是机房中心式的,1bit 来区分热备。是的,也没有用满64bit。
Ticktick
也就是当前在环信系统里要用到的。使用了30bit 的秒级时间,20bit 给Sequence。这里是有个考虑,第一版实现还是希望到毫秒级,所以20bit 的前10bit给了毫秒来用,剩下10bit给 Sequence。等到峰值提高的时候可以暂时回到秒级。
前面说到的三十年问题,因此我在高位留了2bit 做 Version,或者到时候改造使用更长字节数,用第一位来标识不同 ID,或者可以把这2bit 挪给时间用,可以给系统改造留出一定的时间。
剩下的10bit 留给 MachineID,也就是说当前 ID 生成可以直接内嵌在业务服务中,最多支持千级别的服务器数量。最后有2bit 做Tag 用,可能区分群消息和单聊消息。同时你也看出,这个 ID 最多支持一天10亿消息,也是怕系统增速太快,这2bit 可以挪给 Sequence,可以支持40亿级别消息量,或者结合前面的版本支持到百亿级别。
修正:评论里指出上面一个计算错误,不挪借的话应该是支持一天约千亿级别。对比当前 Whatsapp 的600亿和腾讯 QQ 的200亿,已经足够了。
后记
自己实现一个发号器非常简单,所以Ticktick 怎么实现并不重要。不过呐,我还是有 demo 源码的,见https://github.com/ericliang/ticktick
如果你有其他想法,欢迎到微博来讨论@一乐
http://ericliang.info/what-kind-of-id-generator-we-need-in-business-systems/
业务系统需要什么样的ID生成器的更多相关文章
- 架构设计 | 分布式业务系统中,全局ID生成策略
本文源码:GitHub·点这里 || GitEE·点这里 一.全局ID简介 在实际的开发中,几乎所有的业务场景产生的数据,都需要一个唯一ID作为核心标识,用来流程化管理.比如常见的: 订单:order ...
- ID生成器详解
概述 ID 生成器也叫发号器,它的主要目的就是"为一个分布式系统的数据object产生一个唯一的标识",但其实在一个真实的系统里可能也可以承担更多的作用.概括起来主要有以下几点: ...
- id 生成器介绍
背景介绍 在一般的业务场景中, 初始的时候简单的自增数(比如MySQL 自增键)就可以很好的满足需求, 不过随着业务的发展和驱动, 尤其是在分布式的场景中, 如何生成全局的唯一 id 便成了需要慎重考 ...
- ID 生成器 雪花算法
https://blog.csdn.net/wangming520liwei/article/details/80843248 ID 生成器 雪花算法 2018年06月28日 14:58:43 wan ...
- 分布式全局ID生成器设计
项目是分布式的架构,需要设计一款分布式全局ID,参照了多种方案,博主最后基于snowflake的算法设计了一款自用ID生成器.具有以下优势: 保证分布式场景下生成的ID是全局唯一的 生成的全局ID整体 ...
- 如何快速开发一个支持高效、高并发的分布式ID生成器
ID生成器是指能产生不重复ID服务的程序,在后台开发过程中,尤其是分布式服务.微服务程序开发过程中,经常会用到,例如,为用户的每个请求产生一个唯一ID.为每个消息产生一个ID等等,ID生成器也是进行无 ...
- 分布式ID生成器解决方案
一.分布式系统带来ID生成挑战 在复杂的系统中,往往需要对大量的数据如订单,账户进行标识,以一个有意义的有序的序列号来作为全局唯一的ID; 而分布式系统中我们对ID生成器要求又有哪些呢? 全局唯一性: ...
- 分布式ID生成器PHP+Swoole实现(上) - 实现原理
1.发号器介绍 什么是发号器? 全局唯一ID生成器,主要用于分库分表唯一ID,分布式系统数据的唯一标识. 是否需要发号器? 1)是否需要全局唯一. 分布式系统应该不受单点递增ID限制,中心式的会涉及到 ...
- zookeepeer ID生成器 (一)
目录 写在前面 1.1. ZK 的分布式命名服务 1.1.1. 分布式 ID 生成器的类型 UUID方案 1.1.2. ZK生成分布式ID 写在最后 疯狂创客圈 亿级流量 高并发IM 实战 系列 疯狂 ...
随机推荐
- shell telnet 路由器
#!/usr/bin/expect -f spawn telnet 172.16.1.80 expect "login" { send "admin\n" ex ...
- 在程序异常中记录堆栈信息(使用ExWatcher)
在我们编写程序的时候可通过IDE自带的调试环境捕捉到异常(Except)错误,并能查看到相关的信息以便我们修正程序中的问题.但当软件被发布出去后,因为所部署运行的环境与我们的调试环境有很大区别,即使在 ...
- 运行yum报错Error: Cannot retrieve metalink for reposit
http://www.netpc.com.cn/593.html 运行yum报错Error: Cannot retrieve metalink for reposit 今天给Centos通过rpm - ...
- c++ virturn function -- 虚函数
c++ virturn function -- 虚函数 pure irtual function -- 纯虚函数 先看例子 #include <iostream> using nam ...
- CF 327D - Block Tower 数学题 DFS 初看很难,想通了就感觉很简单
D. Block Tower time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- linux内核编译环境配置
linux内核编译环境配置 如果不是编译内核,只需要安装与内核相匹配的kernel-devel开发包即可.即是/lib/modules/`uname -r`/build -> /usr/src/ ...
- DMP文件的生成和使用
1.生成dmp的程序 #include <dbghelp.h> #pragma comment(lib, "dbghelp.lib") //设置异常处理回调函数Se ...
- 普联的路由器TL-WR842N和TL-WR845N还有 TL-WR847N哪一个更好,我是家用
http://zhidao.baidu.com/question/525244706.html?fr=ala&device=mobile&ssid=0&from=844b&am ...
- HTML5文件上传还有进度条
以下是自学it网--中级班上课笔记 网址:www.zixue.it 需要在chrome,ff,IE10下运行 html页面 <!DOCTYPE html> <html lang=&q ...
- java--ThreadPool线程池简单用法
package com.threadPool; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent. ...