KNN邻近分类算法
K邻近(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法了。它采用测量不同特征值之间的距离方法进行分类。它的思想很简单:计算一个点A与其他所有点之间的距离,取出与该点最近的k个点,然后统计这k个点里面所属分类比例最大的,则点A属于该分类。
下面用一个例子来说明一下:
电影名称 |
打斗次数 |
接吻次数 |
电影类型 |
California Man |
3 |
104 |
Romance |
He’s Not Really into Dudes |
2 |
100 |
Romance |
Beautiful Woman |
1 |
81 |
Romance |
Kevin Longblade |
101 |
10 |
Action |
Robo Slayer 3000 |
99 |
5 |
Action |
Amped II |
98 |
2 |
Action |
简单说一下这个数据的意思:这里用打斗次数和接吻次数来界定电影类型,如上,接吻多的是Romance类型的,而打斗多的是动作电影。还有一部名字未知(这里名字未知是为了防止能从名字中猜出电影类型),打斗次数为18次,接吻次数为90次的电影,它到底属于哪种类型的电影呢?
KNN算法要做的,就是先用打斗次数和接吻次数作为电影的坐标,然后计算其他六部电影与未知电影之间的距离,取得前K个距离最近的电影,然后统计这k个距离最近的电影里,属于哪种类型的电影最多,比如Action最多,则说明未知的这部电影属于动作片类型。
在实际使用中,有几个问题是值得注意的:K值的选取,选多大合适呢?计算两者间距离,用哪种距离会更好呢?计算量太大怎么办?假设样本中,类型分布非常不均,比如Action的电影有200部,但是Romance的电影只有20部,这样计算起来,即使不是Action的电影,也会因为Action的样本太多,导致k个最近邻居里有不少Action的电影,这样该怎么办呢?
没有万能的算法,只有在一定使用环境中最优的算法。
1.1 算法指导思想
kNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断出你的类别。
先计算待分类样本与已知类别的训练样本之间的距离,找到距离与待分类样本数据最近的k个邻居;再根据这些邻居所属的类别来判断待分类样本数据的类别。
1.2相似性度量
用空间内两个点的距离来度量。距离越大,表示两个点越不相似。距离的选择有很多[13],通常用比较简单的欧式距离。
欧式距离:
马氏距离:马氏距离能够缓解由于属性的线性组合带来的距离失真,是数据的协方差矩阵。
曼哈顿距离:
切比雪夫距离:
闵氏距离:r取值为2时:曼哈顿距离;r取值为1时:欧式距离。
平均距离:
弦距离:
测地距离:
1.2 类别的判定
投票决定:少数服从多数,近邻中哪个类别的点最多就分为该类。
加权投票法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越大(权重为距离平方的倒数)
优缺点
1.2.1 优点
- 简单,易于理解,易于实现,无需估计参数,无需训练;
- 适合对稀有事件进行分类;
- 特别适合于多分类问题(multi-modal,对象具有多个类别标签), kNN比SVM的表现要好。
- 懒惰算法,对测试样本分类时的计算量大,内存开销大,评分慢;
- 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数;
- 可解释性较差,无法给出决策树那样的规则。
1.2.2 缺点
1.3 常见问题
1.3.1 k值的设定
k值选择过小,得到的近邻数过少,会降低分类精度,同时也会放大噪声数据的干扰;而如果k值选择过大,并且待分类样本属于训练集中包含数据数较少的类,那么在选择k个近邻的时候,实际上并不相似的数据亦被包含进来,造成噪声增加而导致分类效果的降低。
如何选取恰当的K值也成为KNN的研究热点。k值通常是采用交叉检验来确定(以k=1为基准)。
经验规则:k一般低于训练样本数的平方根。
1.3.2 类别的判定方式
投票法没有考虑近邻的距离的远近,距离更近的近邻也许更应该决定最终的分类,所以加权投票法更恰当一些。
1.3.3 距离度量方式的选择
高维度对距离衡量的影响:众所周知当变量数越多,欧式距离的区分能力就越差。
变量值域对距离的影响:值域越大的变量常常会在距离计算中占据主导作用,因此应先对变量进行标准化。
1.3.4 训练样本的参考原则
学者们对于训练样本的选择进行研究,以达到减少计算的目的,这些算法大致可分为两类。第一类,减少训练集的大小。KNN算法存储的样本数据,这些样本数据包含了大量冗余数据,这些冗余的数据增了存储的开销和计算代价。缩小训练样本的方法有:在原有的样本中删掉一部分与分类相关不大的样本样本,将剩下的样本作为新的训练样本;或在原来的训练样本集中选取一些代表样本作为新的训练样本;或通过聚类,将聚类所产生的中心点作为新的训练样本。
在训练集中,有些样本可能是更值得依赖的。可以给不同的样本施加不同的权重,加强依赖样本的权重,降低不可信赖样本的影响。
1.3.5 性能问题
kNN是一种懒惰算法,而懒惰的后果:构造模型很简单,但在对测试样本分类地的系统开销大,因为要扫描全部训练样本并计算距离。
已经有一些方法提高计算的效率,例如压缩训练样本量等。
1.4 算法流程
- 准备数据,对数据进行预处理
- 选用合适的数据结构存储训练数据和测试元组
- 设定参数,如k
- 维护一个大小为k的的按距离由大到小的优先级队列,用于存储最近邻训练元组。随机从训练元组中选取k个元组作为初始的最近邻元组,分别计算测试元组到这k个元组的距离,将训练元组标号和距离存入优先级队列
- 遍历训练元组集,计算当前训练元组与测试元组的距离,将所得距离L 与优先级队列中的最大距离Lmax
- 进行比较。若L>=Lmax,则舍弃该元组,遍历下一个元组。若L < Lmax,删除优先级队列中最大距离的元
- 组,将当前训练元组存入优先级队列。
- 遍历完毕,计算优先级队列中k 个元组的多数类,并将其作为测试元组的类别。
9.测试元组集测试完毕后计算误差率,继续设定不同的k 值重新进行训练,最后取误差率最小的k 值。
Java代码实现
public class KNN {
/**
* 设置优先级队列的比较函数,距离越大,优先级越高
*/
private Comparator<KNNNode> comparator =new Comparator<KNNNode>(){
public int compare(KNNNode o1, KNNNode o2) {
if (o1.getDistance() >= o2.getDistance())
return -1;
else
return 1;
}
};
/**
* 获取K个不同的随机数
* @param k 随机数的个数
* @param max 随机数最大的范围
* @return 生成的随机数数组
*/
public List<Integer> getRandKNum(int k, int max) {
List<Integer> rand = new ArrayList<Integer>(k);
for (int i = 0; i < k; i++) {
int temp = (int) (Math.random() * max);
if (!rand.contains(temp))
rand.add(temp);
else
i--;
}
return rand;
}
/* 计算测试元组与训练元组之前的距离
* @param d1 测试元组
* @param d2 训练元组
* @return 距离值
*/
public double calDistance(List<Double> d1, List<Double> d2) {
double distance = 0.00;
for (int i = 0; i < d1.size(); i++)
distance += (d1.get(i) - d2.get(i)) *(d1.get(i)-d2.get(i));
return distance;
} /**
* 执行KNN算法,获取测试元组的类别
* @param datas 训练数据集
* @param testData 测试元组
* @param k 设定的K值
* @return 测试元组的类别
*/
public String knn(List<List<Double>> datas, List<Double> testData, int k) {
PriorityQueue<KNNNode> pq = new PriorityQueue<KNNNode> (k,comparator);
List<Integer> randNum = getRandKNum(k, datas.size());
for (int i = 0; i < k; i++) {
int index = randNum.get(i);
List<Double> currData = datas.get(index);
String c = currData.get(currData.size() - 1).toString();
KNNNode node = new KNNNode(index, calDistance(testData, currData), c);
pq.add(node);
}
for (int i = 0; i < datas.size(); i++) {
List<Double> t = datas.get(i);
double distance = calDistance(testData, t);
KNNNode top = pq.peek();
if (top.getDistance() > distance) {
pq.remove();
pq.add(new KNNNode(i, distance, t.get(t.size() - 1). toString()));
}
}
return getMostClass(pq);
}
/**
* 获取所得到的k个最近邻元组的多数类
* @param pq 存储k个最近近邻元组的优先级队列
* @return 多数类的名称
*/
private String getMostClass(PriorityQueue<KNNNode> pq) {
Map<String, Integer> classCount=new HashMap<String,Integer>();
int pqsize = pq.size();
for (int i = 0; i < pqsize; i++) {
KNNNode node = pq.remove();
String c = node.getC();
if (classCount.containsKey(c))
classCount.put(c, classCount.get(c) + 1);
else
classCount.put(c, 1);
}
int maxIndex = -1;
int maxCount = 0;
Object[] classes = classCount.keySet().toArray();
for (int i = 0; i < classes.length; i++) {
if (classCount.get(classes[i]) > maxCount)
maxIndex = i; maxCount = classCount.get(classes[i]);
}
return classes[maxIndex].toString();
}
}
KNN邻近分类算法的更多相关文章
- 数学建模:2.监督学习--分类分析- KNN最邻近分类算法
1.分类分析 分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类的分析方法. 分类问题的应用场景:分 ...
- 监督学习-KNN最邻近分类算法
分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术建立分类模型,从而对没有分类的数据进行分类的分析方法. 分类问题的应用场景:用于将事物打上一 ...
- K邻近分类算法
# -*- coding: utf-8 -*- """ Created on Thu Jun 28 17:16:19 2018 @author: zhen "& ...
- KNN分类算法--python实现
一.kNN算法分析 K最近邻(k-Nearest Neighbor,KNN)分类算法可以说是最简单的机器学习算法了.它采用测量不同特征值之间的距离方法进行分类.它的思想很简单:如果一个样本在特征空间中 ...
- KNN分类算法及python代码实现
KNN分类算法(先验数据中就有类别之分,未知的数据会被归类为之前类别中的某一类!) 1.KNN介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法. 机器学习, ...
- 数据挖掘之分类算法---knn算法(有matlab例子)
knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法.注意,不是聚类算法.所以这种分类算法 必然包括了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒 ...
- knn分类算法学习
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...
- 分类算法-----KNN
摘要: 所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用她最接近的k个邻居来代表.kNN算法的核心思想是如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于 ...
- kNN算法:K最近邻(kNN,k-NearestNeighbor)分类算法
一.KNN算法概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它 ...
随机推荐
- 【Vmware】VirtualBox下虚拟机的网络配置
1.VirtualBox的提供了四种网络接入模式,它们分别是:1.NAT 网络地址转换模式(NAT,Network Address Translation)2.Bridged Adapter ...
- Android Lights
Android Lights 很多Android手机上都配有LED灯,手机在充电.新来短信等时候都会有相应的指示灯提示. Android系统之中,一共定义了8个逻辑灯,包含:背光,键盘灯,按键灯,充电 ...
- erlang四种监控策略
转自:http://jasionq.blog.163.com/blog/static/10970577920133883158424/ Supervisor Behaviour是一个用来实现一个sup ...
- 5.编写Java应用程序。首先,定义描述学生的类——Student,包括学号(int)、 姓名(String)、年龄(int)等属性;二个方法:Student(int stuNo,String name,int age) 用于对对象的初始化,outPut()用于输出学生信息。其次,再定义一个主类—— TestClass,在主类的main方法中创建多个Student类的对象,使用这些对象来测 试St
Student类: package com.bao; public class Student { int stuNo;String name,sex;int age,weight; Student( ...
- Zookeeper 启动错误
启动后日志如下 : 2016-09-14 05:51:19,449 [myid:1] - INFO [QuorumPeer[myid=1]/0:0:0:0:0:0:0:0:2181:FastLeade ...
- laravel 邮箱改密功能
参考网址: http://laravelacademy.org/post/1290.html
- ios压缩图片
/** * 压缩图片到指定文件大小 * * @param image 目标图片 * @param size 目标大小(最大值) * * @return 返回的图片文件 */ - (NSDat ...
- SQL多表连接查询以及mysql数据库、sqlserver数据库常见不同点
mysql数据库表及数据准备语句: USE test; DROP TABLE IF EXISTS `teacher_table`; DROP TABLE IF EXISTS `student_tabl ...
- Swift Runtime动态性分析
Swift是苹果2014年发布的编程开发语言,可与Objective-C共同运行于Mac OS和iOS平台,用于搭建基于苹果平台的应用程序.Swift已经开源,目前最新版本为2.2.我们知道Objec ...
- CSS3的box-sizing属性
盒模型的宽度,在 IE5.x 以及 Quirks 模式的 IE6/7 中,将 border 与 padding 都包含在 width 之内 W3C标准中的盒模型宽度为内容宽度,不包括内边距paddin ...