转载 Deep learning:五(regularized线性回归练习)
前言:
本节主要是练习regularization项的使用原则。因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象。因此在模型的损失函数中,需要对模型的参数进行“惩罚”,这样的话这些参数就不会太大,而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。本文参考的资料参考网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex5/ex5.html。主要是给定7个训练样本点,需要用这7个点来模拟一个5阶多项式。主要测试的是不同的regularization参数对最终学习到的曲线的影响。
实验基础:
此时的模型表达式如下所示:
模型中包含了规则项的损失函数如下:
模型的normal equation求解为:
程序中主要测试lambda=0,1,10这3个参数对最终结果的影响。
一些matlab函数:
plot:
主要是将plot绘曲线的一些性质。比如说:plot(x,y,'o','MarkerEdgeColor','b','MarkerFaceColor','r')这里是绘制x-y的点图,每个点都是圆圈表示,圆圈的边缘用蓝色表示,圆圈里面填充的是红色。由此可知’MarkerEdgeColor’和’MarkerFaceColor’的含义了。
diag:
diag使用来产生对角矩阵的,它是用一个列向量来生成对角矩阵的,所以其参数应该是个列向量,比如说如果想产生3*3的对角矩阵,则可以是diag(ones(3,1)).
legend:
注意转义字符的使用,比如说legned(‘\lambda_0’),说明标注的是lamda0.
实验结果:
样本点的分布和最终学习到的曲线如下所示:
可以看出,当lambda=1时,模型最好,不容易产生过拟合现象,且有对原始数据有一定的模拟。
实验主要代码:
clc,clear
%加载数据
x = load('ex5Linx.dat');
y = load('ex5Liny.dat'); %显示原始数据
plot(x,y,'o','MarkerEdgeColor','b','MarkerFaceColor','r') %将特征值变成训练样本矩阵
x = [ones(length(x),1) x x.^2 x.^3 x.^4 x.^5];
[m n] = size(x);
n = n -1; %计算参数sidta,并且绘制出拟合曲线
rm = diag([0;ones(n,1)]);%lamda后面的矩阵
lamda = [0 1 10]';
colortype = {'g','b','r'};
sida = zeros(n+1,3);
xrange = linspace(min(x(:,2)),max(x(:,2)))';
hold on;
for i = 1:3
sida(:,i) = inv(x'*x+lamda(i).*rm)*x'*y;%计算参数sida
norm_sida = norm(sida)
yrange = [ones(size(xrange)) xrange xrange.^2 xrange.^3,...
xrange.^4 xrange.^5]*sida(:,i);
plot(xrange',yrange,char(colortype(i)))
hold on
end
legend('traning data', '\lambda=0', '\lambda=1','\lambda=10')%注意转义字符的使用方法
hold off
参考资料:
作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。
转载 Deep learning:五(regularized线性回归练习)的更多相关文章
- 转载 Deep learning:六(regularized logistic回归练习)
前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在lo ...
- 转载 Deep learning:三(Multivariance Linear Regression练习)
前言: 本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage. ...
- 转载 deep learning:八(SparseCoding稀疏编码)
转载 http://blog.sina.com.cn/s/blog_4a1853330102v0mr.html Sparse coding: 本节将简单介绍下sparse coding(稀疏编码),因 ...
- [转载]Deep Learning(深度学习)学习笔记整理
转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8. ...
- 转载 Deep learning:一(基础知识_1)
前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程UFLDL Tutorial,据说这个教程写得浅显易懂,也不太长.不过在这这之前还是复习下m ...
- deep learning 练习 多变量线性回归
多变量线性回归(Multivariate Linear Regression) 作业来自链接:http://openclassroom.stanford.edu/MainFolder/Document ...
- 转载 Deep learning:二(linear regression练习)
前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPag ...
- 转载 Deep learning:四(logistic regression练习)
前言: 本节来练习下logistic regression相关内容,参考的资料为网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage ...
- 转载 Deep learning:七(基础知识_2)
前面的文章已经介绍过了2种经典的机器学习算法:线性回归和logistic回归,并且在后面的练习中也能够感觉到这2种方法在一些问题的求解中能够取得很好的效果.现在开始来看看另一种机器学习算法--神经网络 ...
随机推荐
- 转Delphi中Create(nil),Create(self),Create(Application)区别
Create(nil);//需要自己释放 Create(Self);//当Self释放时自动触发释放 Create(Application);//当Application释放时自动释放 Create( ...
- startssl证书firefox支持配置
解决Firefox不信任StartSSL证书问题 wget http://cert.startssl.com/certs/ca.pem wget http://cert.startssl.com/ce ...
- io外挂
c++里最快的io方式是什么呢? 详见这里. 同时给出一个比较常用的方式,就是用fread.然后自己解析文本,而不是用cin或者scanf,见这里: //fast io test #include & ...
- Laravel框架开发规范-修订版
1.PHP编码规范 1.1 标签 PHP 程序可以使用<?php ?>或<?= ?>来界定PHP代码 在HTML 页面中嵌入纯变量时,使用<?= ?>这样的形式 纯 ...
- MySql - JdbcType - Oracle类型映射
MySql - JdbcType - Oracle类型映射 MySQL数据类型 JDBC TYPE Oracle数据类型 BIGINT BIGINT NUMBER(20) TINYINT TINY ...
- mac xmind快捷键
tab:新建分支 command +z : 撤销 command + "+":放大 command + "-":缩小 shift + enter : 文字换行
- python初识1
作者:武沛齐 出处:http://www.cnblogs.com/wupeiqi/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接. 安装Pyt ...
- form表单验证提示语句
<input id="idcardcode" name="idcardcode" class="form-control" ...
- linux安装文件命令
tar -zxvf apache-tomcat.tar.gz -C /home/poka 注:安装tar.gz的安装包 设置系统自动启动tomcat 切换到root用户,执行命令 #chkconfig ...
- HDU 5755 Gambler Bo
可以设n*m个未知量,建立n*m个方程.位置i,j可以建立方程 (2*x[i*m+j]+x[(i-1)*m+j]+x[(i+1)*m+j]+x[i*m+j-1]+x[i*m+j+1])%3=3-b[i ...