Problem Description
在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板。魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示。任一时刻魔板的状态可用方块的颜色序列表示:从魔板的左上角开始,按顺时针方向依次写下各方块的颜色代号,所得到的数字序列即可表示此时魔板的状态。例如,序列(1,2,3,4,5,6,7,8)表示魔板状态为:

1 2 3 4
8 7 6 5

对于魔板,可施加三种不同的操作,具体操作方法如下:

A: 上下两行互换,如上图可变换为状态87654321
B: 每行同时循环右移一格,如上图可变换为41236785
C: 中间4个方块顺时针旋转一格,如上图可变换为17245368

给你魔板的初始状态与目标状态,请给出由初态到目态变换数最少的变换步骤,若有多种变换方案则取字典序最小的那种。

 
Input
每组测试数据包括两行,分别代表魔板的初态与目态。
 
Output
对每组测试数据输出满足题意的变换步骤。
 
Sample Input
12345678 17245368 12345678 82754631
 
Sample Output
C AC

由于刚做完八数码问题,再来做这题,认为非常简单。可是用bfs超时(原因是多组数据,太多的数据将程序拖到超时),用dbfs就一直wa(原来是反向的搜索不能保证后半段的字典序最小,只能保证后半段的逆序的字典序最小),所以就得不到正确结果。

百度了一下,原来使用映射+bfs预处理的方法解决的,这样,再多组数据也不怕了。

将任意的初始状态映射为12345678,在这个过程中得到一个映射函数,目标状态根据这个映射函数,映射为相应的目标状态。(这样子能得到正确答案的原因是,魔板的变换,其实只是位置的变换,数字只是用来标记位置的而已,通过同一种映射关系将初始和目标状态的标记同时该改变,所以仍然能得到正确答案)

那么所有的数据,都能转化为初始状态为12345678的搜索,那么只要一遍bfs搜索出12345678所有能到达的状态,并记录步骤即可。

 #include <stdio.h>
#include <string.h>
#include <queue>
#include <string>
#include <iostream>
using namespace std;
char st[],ed[];
int vis[];
string ans[];
int fac[] = {,,,,,,,,};
int getHash(char *str)//康托展开
{
int i,j,hash = ,cnt;
for(i=; i<; ++i)
{
cnt = ;
for(j=i+; j<; ++j)
if(str[j]<str[i])
cnt++;
hash += cnt * fac[-i-];
}
return hash;
}
struct node
{
char str[];
};
int d[][] = {{,,,,,,,},{,,,,,,,},{,,,,,,,}};
char change[]; void bfs()
{
queue<node> q;
node cur,tmp;
int i,j;
for(i=; i<; ++i)
cur.str[i] = i + '';
int hash = getHash(cur.str);
q.push(cur);
vis[hash] = true;
q.push(cur);
while(!q.empty())
{
cur = q.front(); q.pop();
int pHash = getHash(cur.str);
for(i=; i<; ++i)
{
for(j=; j<; ++j)
tmp.str[j] = cur.str[d[i][j]];
hash = getHash(tmp.str);
if(vis[hash]) continue;
vis[hash] = true;
ans[hash] = ans[pHash] + (char)('A' + i);
q.push(tmp);
}
}
} int main()
{
bfs();
int i;
while(scanf("%s%s",st,ed)!=EOF)
{
for(i=; i<; ++i)
change[st[i]-''] = i+'';//得到映射函数
for(i=; i<; ++i)
ed[i] = change[ed[i]-''];//根据映射函数改变目标状态
int hash = getHash(ed);
cout<<ans[hash]<<endl;
}
return ;
}

hdu1430魔板的更多相关文章

  1. hdu1430魔板(BFS+康托展开)

    做这题先看:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description 在魔方风靡全球之后不久,Rubik先 ...

  2. hdu1430 魔板(康拓展开 bfs预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  3. hdu-1430 魔板 康拓展开+映射优化

    给定三种操作,将排列A转化为排列B,求最少步骤. 这种题目可以只跑一次bfs,比如只跑"12345678",那么如果遇到"23456781"->某个字符串 ...

  4. HDU1430;魔板(BFS+康托展开)

    传送门 题意 给出初始序列与终止序列,给出三种操作,问最少经过几次操作能使初始->终止,输出操作(字典序最小) 分析 字符串只有8个字符,使用康托展开. 1.BFS将所有序列从"123 ...

  5. ACM-康托展开+预处理BFS之魔板——hdu1430

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  6. Sicily 1051: 魔板(BFS+排重)

    相对1150题来说,这道题的N可能超过10,所以需要进行排重,即相同状态的魔板不要重复压倒队列里,这里我用map储存操作过的状态,也可以用康托编码来储存状态,这样时间缩短为0.03秒.关于康托展开可以 ...

  7. Sicily 1150: 简单魔板(BFS)

    此题可以使用BFS进行解答,使用8位的十进制数来储存魔板的状态,用BFS进行搜索即可 #include <bits/stdc++.h> using namespace std; int o ...

  8. hdu.1430.魔板(bfs + 康托展开)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  9. HDU 1430 魔板(康托展开+BFS+预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

随机推荐

  1. RPC 的概念模型与实现解析(转)

    今天分布式应用.云计算.微服务大行其道,作为其技术基石之一的 RPC 你了解多少?一篇 RPC 的技术总结文章,数了下 5k+ 字,略长,可能也不适合休闲的碎片化时间阅读,可以先收藏抽空再细读:) 全 ...

  2. Mysql 和Oracle rows 区别

    mysql> explain select t1.* from t2 ,t1 where t2.id=t1.id and t2.id<3;\ +----+-------------+--- ...

  3. 多校第五场 归并排序+暴力矩阵乘+模拟+java大数&amp;记忆化递归

    HDU 4911 Inversion 考点:归并排序 思路:这题呀比赛的时候忘了知道能够用归并排序算出逆序数,可是忘了归并排序的实质了.然后不会做-- 由于看到题上说是相邻的两个数才干交换的时候.感觉 ...

  4. Swift - 文件,文件夹操作大全

    ios开发经常会遇到读文件,写文件等,对文件和文件夹的操作,这时就可以使用NSFileManager,NSFileHandle等类来实现. 下面总结了各种常用的操作: 1,遍历一个目录下的所有文件 1 ...

  5. Nancy.Host的Web应用

    Nancy.Host实现脱离iis的Web应用 本篇将介绍如何使用Nancy.Host实现脱离iis的Web应用,在开源任务管理平台TaskManagerV2.0代码里面已经使用了Nancy.Host ...

  6. Android 编程之第三方开发 MaoZhuaWeiBo微博开发演示样例-1

    在大学期间我做过非常多类似这种APP.这个是我们小组之前做的,我后期增加非常多新元素.完好了这个应用,由于为了加强 专业技术嘛.也是常常熬夜写些小东西,嘿嘿.只是还算不错.起码技术长进了不少嘛,还是非 ...

  7. 二进制搜索方法C++通用执行

    算法很easy.直接附着到代码它 #include <iostream> using namespace std; template<typename T> int binar ...

  8. 跟我一起学extjs5(13--运行菜单命令在tabPanel中显示模块)

    跟我一起学extjs5(13--运行菜单命令在tabPanel中显示模块)         上面设计好了一个模块的主界面,以下通过菜单命令的运行来把这个模块增加到主界面其中. 在MainModule. ...

  9. [Cocos2d-x]布局与定位

    游戏中,精灵的位置由Position与AnchorPoint同时决定. Scene 锚点 (0,0) 不启用锚点 CCNode锚点 (0,0) 不启用锚点  CCLayer锚点 (0,0) 不启用锚点 ...

  10. Java Swing界面编程(31)---菜单条:JMenu

    package com.beyole.test; import javax.swing.JFrame; import javax.swing.JMenu; import javax.swing.JMe ...