#515. 「LibreOJ β Round #2」贪心只能过样例

题意: 给出 n 个数 \(x_i\), 每个数的取值范围为 \([a_i, b_i]\), 求 \(\sum{x_i^2}\) 的种类数. \(1 ≤ n ≤ 100, 1 ≤ a_i, b_i ≤ 100\).

思路: 直接状压的话需要枚举每个状态, 有了 bitset 之后就可以整体右移来转移了.

view code
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inc(i, l, r) for (int i = l; i <= r; i++) const int maxn = 105; int n, a[maxn], b[maxn];
bitset<1000001> dp[maxn]; int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n;
inc(i, 1, n) cin >> a[i] >> b[i];
dp[0][0] = 1;
inc(i, 1, n) inc(j, a[i], b[i]) dp[i] |= dp[i - 1] << (j * j);
cout << dp[n].count() << "\n";
}

 

hihocoder#1513 : 小Hi的烦恼

题意: 五维偏序.

思路: 用 bitset 维护每个维度排序后的标号前缀. 这个写法本质就是对暴力的优化. 复杂度 \(O(\frac{n^2}{w})\). 本题目 N 为3e4, 所以时间空间可以接受.

view code
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inc(i, l, r) for (int i = l; i <= r; i++)
#define pii pair<int, int>
#define fi first
#define se second
#define pb push_back const int maxn = 3e4 + 5; int n;
pii p[6][maxn];
bitset<maxn> stu[6][maxn], ans; int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n;
inc(i, 1, n) {
inc(j, 1, 5) {
cin >> p[j][i].fi;
p[j][i].se = i;
}
}
inc(i, 1, 5) sort(p[i] + 1, p[i] + n + 1);
inc(i, 1, 5) {
inc(j, 2, n) {
stu[i][p[i][j].se] = stu[i][p[i][j - 1].se];
stu[i][p[i][j].se].set(p[i][j - 1].se);
}
}
inc(i, 1, n) {
ans.set();
inc(j, 1, 5) ans &= stu[j][i];
cout << ans.count() << "\n";
}
}

分块的写法(只是试过 hiho 的数据, 5e4 的 Cogs 现在访问不了了, 不知道会不会T):

view code
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inc(i, l, r) for (int i = l; i <= r; i++)
#define pii pair<int, int>
#define fi first
#define se second
#define pb push_back const int maxn = 3e4 + 5;
const int block = 240; int n;
int a[6][maxn];
pii p[6][maxn];
bitset<maxn> ans, tmp;
bitset<maxn> bit[6][240];
vector<int> cit[6][240];
int bel[maxn]; int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
//freopen("try.in", "r", stdin);
//freopen("try2.out", "w", stdout);
cin >> n;
inc(i, 0, n - 1) {
inc(j, 0, 4) {
cin >> p[j][i].fi;
p[j][i].se = i;
a[j][i] = p[j][i].fi;
}
}
inc(i, 0, n - 1) bel[i] = i / block;
inc(i, 0, 4) sort(p[i], p[i] + n);
inc(i, 0, 4) {
bitset<maxn> w;
vector<int> v;
w.reset();
inc(j, 0, n - 1) {
w.set(p[i][j].se);
v.push_back(p[i][j].se);
if (j == n - 1 || bel[j] != bel[j + 1]) {
bit[i][bel[j]] = w;
cit[i][bel[j]] = v;
vector<int>().swap(v);
}
}
}
inc(i, 0, n - 1) {
ans.set();
inc(j, 0, 4) {
tmp.reset();
int f = (a[j][i] - 1) / block;
if (f) tmp |= bit[j][f - 1];
for (int k = 0; k < (int)cit[j][f].size(); k++) {
int id = cit[j][f][k];
if (id == i) break;
tmp.set(id);
}
ans &= tmp;
}
cout << ans.count() << "\n";
}
}

 

Codeforces - 1097F Alex and a TV Show

题意: 给出 n 个可重集, 有四种操作: 1.把一个集合设为一个数; 2.把一个集合变成另外两个集合的并; 3.把一个集合变为从另外两个集合中各取一个数的 gcd; 4.询问集合中某一个数的个数模2. n ≤ 1e5, 操作 q ≤ 1e6, 值域 7000.

思路: 做法是搬运的, 我并不会做. 如果用 bitset 维护每个集合, 此时不好处理操作3. 改变思路, 既然和 gcd 有关就令 bitset 维护每个集合的约数(此时仍是可重集, 并且已模2, 不然咋存), 考虑每个数出现的奇偶, 就会发现操作 2, 3 分别对应异或, 按位与. 而操作 4 要用莫比乌斯函数推导一下:

\[\begin{aligned}&\sum\limits_{i\in A}[\frac i x=1]\\=&\sum\limits_{i\in A}\sum\limits_{d|\frac i x}\mu(d)\\=&\sum\limits_{d\in A',x|d}\mu(\frac d x)\end{aligned}
\]

在模 2 意义下 +1 和 -1 都是 1, 只要考虑那些莫比乌斯函数不为 0 的情况, 预处理出每一个数的含平方因子的倍数情况.

view code
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inc(i, l, r) for (int i = l; i <= r; i++) const int maxn = 1e5 + 5;
const int maxm = 7005; int n, q, op, x, y, z;
bitset<7005> fac[maxm], mul[maxm], mu, a[maxn]; int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
mu.set();
inc(i, 1, 7000) {
for (int j = 2; i * j * j <= 7000; j++) {
mu[i * j * j] = 0;
}
}
inc(i, 1, 7000) {
for (int j = 1; i * j <= 7000; j++) {
fac[i * j][i] = 1;
mul[i][i * j] = mu[j];
}
}
cin >> n >> q;
while (q--) {
cin >> op;
if (op == 1) {
cin >> x >> y;
a[x] = fac[y];
} else if (op == 2) {
cin >> x >> y >> z;
a[x] = a[y] ^ a[z];
} else if (op == 3) {
cin >> x >> y >> z;
a[x] = a[y] & a[z];
} else {
cin >> x >> y;
cout << (a[x] & mul[y]).count() % 2;
}
}
}

 

bitset 相关题目的更多相关文章

  1. LeetCode: Palindrome 回文相关题目

    LeetCode: Palindrome 回文相关题目汇总 LeetCode: Palindrome Partitioning 解题报告 LeetCode: Palindrome Partitioni ...

  2. leetcode tree相关题目总结

    leetcode tree相关题目小结 所使用的方法不外乎递归,DFS,BFS. 1. 题100 Same Tree Given two binary trees, write a function ...

  3. [LeetCode] 链表反转相关题目

    暂时接触到LeetCode上与链表反转相关的题目一共有3道,在这篇博文里面总结一下.首先要讲一下我一开始思考的误区:链表的反转,不是改变节点的位置,而是改变每一个节点next指针的指向. 下面直接看看 ...

  4. [LeetCode] [链表] 相关题目总结

    刷完了LeetCode链表相关的经典题目,总结一下用到的技巧: 技巧 哑节点--哑节点可以将很多特殊case(比如:NULL或者单节点问题)转化为一般case进行统一处理,这样代码实现更加简洁,优雅 ...

  5. 九度 Online Judge 之《剑指 Offer》一书相关题目解答

    前段时间准备华为机试,正好之前看了一遍<剑指 Offer>,就在九度 Online Judge 上刷了书中的题目,使用的语言为 C++:只有3题没做,其他的都做了. 正如 Linus To ...

  6. 已知前序(后序)遍历序列和中序遍历序列构建二叉树(Leetcode相关题目)

    1.文字描述: 已知一颗二叉树的前序(后序)遍历序列和中序遍历序列,如何构建这棵二叉树? 以前序为例子: 前序遍历序列:ABCDEF 中序遍历序列:CBDAEF 前序遍历先访问根节点,因此前序遍历序列 ...

  7. [LeetCode] 二叉树相关题目(不完全)

    最近在做LeetCode上面有关二叉树的题目,这篇博客仅用来记录这些题目的代码. 二叉树的题目,一般都是利用递归来解决的,因此这一类题目对理解递归很有帮助. 1.Symmetric Tree(http ...

  8. LeetCode - 排列相关题目

    1.获取全排列 https://leetcode.com/problems/permutations/submissions/ 按字典序输出: 这里用的是vector<int>,不是引用. ...

  9. 剑指offer编程题Java实现——面试题4后的相关题目

    题目描述: 有两个排序的数字A1和A2,内存在A1的末尾有足够多的空余空间容纳A2.请实现一个函数,把A2中的所有数字插入到A1中并且所有的数字是排序的. 还是利用从后向前比较两个数组中的数字的方式来 ...

随机推荐

  1. opencv +数字识别

    现在很多场景需要使用的数字识别,比如银行卡识别,以及车牌识别等,在AI领域有很多图像识别算法,大多是居于opencv 或者谷歌开源的tesseract 识别. 由于公司业务需要,需要开发一个客户端程序 ...

  2. Java基础--冒泡排序算法

    冒泡排序算法的运作如下:(从后往前) 比较相邻的元素,如果第一个比第二个大,就交换他们两个. 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的元素. 针对 ...

  3. XCTF---easyjni的WriteUp

    一.题目来源     题目来源:XCTF的mobile区的easyjni题目.     题目下载地址:题目链接地址 二.解题过程     1.下载好题目后,安装到夜神模拟器中,发现有一个输入框和一个按 ...

  4. 数据挖掘入门系列教程(四)之基于scikit-lean实现决策树

    目录 数据挖掘入门系列教程(四)之基于scikit-lean决策树处理Iris 加载数据集 数据特征 训练 随机森林 调参工程师 结尾 数据挖掘入门系列教程(四)之基于scikit-lean决策树处理 ...

  5. ubuntu16.04 + caffe + SSD + gpu 安装

    昨天我们买好了硬件,今天我们开始安装caffe了,我本人安装过caffe不下10次,每次都是一大堆问题,后来终于总结了关键要点,就是操作系统. 1. 千万不要用ubuntu17.10来安装, 2. 最 ...

  6. eclipse代码提示完善

    转载请注明出处:https://www.cnblogs.com/Higurashi-kagome/p/12263267.html 1.参考https://blog.csdn.net/ithomer/a ...

  7. vue 开发时候 nginx绑定多个系统 爆红 sockjs-node/info?t

    如果你的浏览器,与NPM服务器,不是同一个机器(不是localhost),那么会导致这个报错. 我搜索了好久,才发现这个是可以在webpackjs里配置的(即vue.config.js): https ...

  8. tomcat 对 vue的history默认支持 tomcat 开启步骤 1.build文件放入webapps目录 2.进入conf目录修改server.xml端口号改成8088 3.进入bin目录运行startup.bat 4.浏览器 localhost:8088/workName 访问即可

    tomcat 对 vue的history默认支持 tomcat 开启步骤 1.build文件放入webapps目录 2.进入conf目录修改server.xml端口号改成8088 3.进入bin目录运 ...

  9. 关于ATL生成COM注册失败解决方法

    最近搞C++封装研究了下COM 做最后整理打包的时候发现各种问题引发的注册失败,so整理下备忘. 1.因引用其它动态连接库与你注册的dll不在同一目录下引起的异常.(解决方法将依赖dll放置与注册dl ...

  10. 网络安全从入门到精通 (第二章-6) 后端基础PHP—表单验证

    本文内容: 什么是表单? 如何创建一个表单: 接收并验证: PHP和数据库交互 1,什么事表单? 表单在网页中主要负责数据采集. 表单由三部分组成: 表单标签:这里面包含了处理表单数据所用动态脚本的U ...