Z城市居住着很多只跳蚤。在Z城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有N+1个自然数。其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。 
比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。 
当确定N和M后,显然一共有M^N张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。 

Input

两个整数N和M(N <= 15 , M <= 100000000)。

Output

可以完成任务的卡片数。

Sample Input

2 4

Sample Output

12

Hint

这12张卡片分别是: 
(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4), 
(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4) 
看了好久才略懂
题解  无非就一个方程a1*x1+a2*x2+....+an*xn+M*x(n+1)=1;
要想使方程有解__gcd(a1,a2,a3...an,M)=1;
所以我们要只要能是其最大公约数为1 的组合就可以了,那么问题来了如何求呢?
首先我们知道M个数字,N个位置,一共有M^n种选择,为__GCD为1 的情况太多了,我们可以先求出不为1 的情况然后减1,因为问题转换为了求m个数求GCD不为1的组合数
我们知道 每一组数据中都要有M,如果说那么这么多数字的公因子也一定是M的公因子,所以我们首先要对M进行素数分解

然后用容斥原理枚举最大公约数不为 1 的个数,也就是对M的所有质因子进行排列,因为最大公因子不为1,那一定是M的个别因子的组合,假设最大公约数为n,那么除了M其他N个数

必须都是N 的倍数,因此一共有M/n个数可以选择(由于这里是质因子,我们直接除就可以啦,不用求LCM啦)。。共有KSM(M/n,N)中选择(快速幂)

然后就是容斥的奇加偶减 最后一步 用总的减去gcd不为1的就是最后答案

#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const int N=1E6+;
ll arr[N]; ll ksm(ll x,ll y){
ll res=;
while(y){
if(y&) res=res*x;
x=x*x;
y>>=;
}
return res;
} ll zfj(ll m){
ll pos=;
for(ll i=;i*i<=m;i++){
if(m%i==){
arr[pos++]=i;
while(m%i==){
m/=i;
}
}
}
if(m>){
arr[pos++]=m;
}
return pos;
}
int main(){
ll n,m;
cin>>n>>m;
ll pos=zfj(m);
ll s=;
for(int i=;i<(<<pos);i++){
ll cnt=;
ll sum=;
for(int j=;j<pos;j++){
if(&(i>>j)){
cnt++;
sum*=arr[j];
}
}
if(cnt&) {
s+=ksm(m/sum,n);
}
else {
s-=ksm(m/sum,n);
}
}
printf("%lld\n",ksm(m,n)-s);
return ;
}

POJ 跳蚤的更多相关文章

  1. poj 1091 跳蚤

    跳蚤 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8482   Accepted: 2514 Description Z城 ...

  2. POJ 1091 跳蚤 容斥原理

    分析:其实就是看能否有一组解x1,x2, x3, x4....xn+1,使得sum{xi*ai} = 1,也就是只要有任意一个集合{ai1,ai2,ai3, ...aik|gcd(ai1, ai2, ...

  3. POJ题目排序的Java程序

    POJ 排序的思想就是根据选取范围的题目的totalSubmittedNumber和totalAcceptedNumber计算一个avgAcceptRate. 每一道题都有一个value,value ...

  4. [BZOJ1220][POJ1091][HNOI2002]跳蚤

    [BZOJ1220][POJ1091][HNOI2002]跳蚤 试题描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长. ...

  5. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  6. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  7. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  8. POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Descr ...

  9. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

随机推荐

  1. 【狂神说】JAVA Mybatis 笔记+源码

    简介 自学的[狂神JAVA]MyBatis GitHub源码: https://github.com/Donkequan/Mybatis-Study 分享自写源码和笔记 配置用的 jdk13.0.2 ...

  2. Linux常用命令 - cat命令详解

    21篇测试必备的Linux常用命令,每天敲一篇,每次敲三遍,每月一循环,全都可记住!! https://www.cnblogs.com/poloyy/category/1672457.html 获取t ...

  3. JavaScript语法记要

    JavaScript语法记要 1.JS代码忽略缩进和换行 2.JS六种数据类型 String // 字符串 Number // 数值 Boolean // 布尔值 null // 空值 undefin ...

  4. 2.Grpc消息定义

    一个简单示例 syntax ="proto3";//设置默认版本,不写默认为proto2 //1,2,3 是字段的标记 Tag 不表示字段的值 message FirstMessa ...

  5. 深入调研Linq to Objects Join Linq to Entity

    最近工作中遇到数据库组合查询带来的一些问题,因此有必要调研一下Linq to Objects Join Linq to Entity.参考一些网友的代码案例,深入实践了一下使用EntityFramew ...

  6. Java系列之内部类

    今天温习一下 Java 中的内部类,内部类一般有如下几种:静态内部类.成员内部类.匿名内部类和方法内部类,下文中将主要介绍静态内部类和成员内部类,主要内容如下: 概述 静态内部类 成员内部类 匿名内部 ...

  7. Codeforces Round #628 (Div. 2)

    1325A - EhAb AnD gCd 题意:随意找两个数是他们的最大公约数 GCD 与最小公倍数 LCM 之和为所给定的值. 思路:找一下规律 ,假设所给的 数位n, 那么我们将n分成 1 ,n- ...

  8. Face The Right Way POJ - 3276(区间)

    Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, li ...

  9. 小白快速使用fetch与后端交互

    本人专心后端,但在完成页面碰到了交互,选择了fetch来完成, 总结了一下简单的使用fetch的方法. fetch是纯原生JS与后端交互的方法,请注意,Fetch规格不同于jQuery.ajax(), ...

  10. STM32F103ZET6独立看门狗

    1.IWDG简介 STM32F103ZET6的独立看门狗(IWDG)是由内部LSI(内部约40KHZ低速时钟)时钟驱动的.由于IWDG是由内部低速时钟驱动,所以就算主时钟发生故障,IWDG依然能够工作 ...