[LuoguP1025][数据加强]数的划分
Solution
参考博客:Click
题目意思非常明确了,这是一道组合数学的题目。我就直接讲dp解法了。
dp
题意可以转化为将\(n\)个苹果放进\(k\)个盒子里,并且不允许空盒。
设\(f[i][j]\)代表将\(i\)个苹果放入\(j\)个盒子中,那么我们用解决这类问题的常用方法来分析:
我们必须先保证每个盒子非空,因此在\(i\)个苹果中选出\(j\)个放入每个盒子。
此时我们剩余\(i-j\)个苹果,我们就是要往已有的一层苹果上加\(i-j\)苹果,求此时的方案数。
现在\(i-j\)个苹果可以任意分配了,也就是分成\(1\)份、\(2\)份、\(3\)份都是合法的……
得到转移方程:
\]
枚举\(i\),随后枚举\(j\),随后枚举\(k\),三层循环即可得出答案。
时间复杂度为\(O(nk^2)\),预期得分70分。
这个或许可以套树状数组优化一下求和……
那么复杂度是\(O(nk\log k)\),然而最大的范围\(nk\)达到了\(1.2\)亿的大小,再加上个\(\log\)铁定超时。
然后你可以发现:
\]
为什么会有这样的奇特之处呢?因为\(i-j\)就是\(i\)和\(j\)的差值,那么同增同减一个\(1\),dp数组的一维下标是不变的,只是二维的\(k\)会少一个\(dp[i-j][j]\),那么我们把这个加上就好了。
据此写出转移方程:
\]
两层循环即可转移,复杂度就降到\(O(nk)\)了,由于常数小,可以通过本题。
但交上去……MLE!
空间优化
空间复杂度也是\(O(nk)\)的,但事实上我们只需要用到\(O(k^2)\)的内容,很容易想到滚动数组。
于是写出:
inline int pos(const int &x)
{
return (x % 600) + 1;
}
int main()
{
scanf("%d%d", &n, &k);
dp[pos(0)][0] = 1;
int i, j;
for (i = 1; i <= n; ++i)
{
memset(dp[pos(i)], 0, sizeof(dp[pos(i)]));
for (j = 1; j <= k && j <= i; ++j)
dp[pos(i)][j] = (dp[pos(i-j)][j] + dp[pos(i-1)][j - 1]) % 10086;
}
printf("%d", dp[pos(n)][k]);
return 0;
}
个人预期是能AC了,但实际上……第15个点冷酷无情地T了。
评测机跑得不够快
拯救TLE
吸了氧还是不能拯救世界之后,我想起了当年用的一种奇淫技巧……
显然此时TLE完全是常数问题,将内层循环的两个判断改成取min逆序后依然无法通过。
常数影响最大的就是pos函数了,于是改成了指针映射,成功AC!
指针映射
我们考虑要如何避免pos函数的高耗时,当然想到了预处理。预处理一遍pos数组,直接访问即可,这应该也是能卡过的(没有尝试)。
但还有一种更有技巧性、效率更高的方法:指针。
开一个f数组,如下:
int *f[maxn];
然后赋值:
f[i] = dp[pos(i)];
那么访问时,直接:
f[i][j] = ....
为什么会快?这个很显然了吧……事实上,这种方法比:
dp[pos[i]][j] = ....
要快上不少,为什么?
因为\(f[i]\)存的索引直接加上\(j\)就能得到地址,我们实际上避免了两个大数的乘法,而使其变成了加法。
举例:
原先访问方式:
dp[x∗(m+2)+y]
进行了一次乘法一次加法
解析一下就是:
return dp + (x * (m+2) + y);
而现在的访问方式:
(f[x]+y)
解析一下就是:
return (f + x) + y;
效率提升相当显著。
以上这段是直接copy原来那篇树上背包的优化中的内容……
同时注意我们的预处理方式:
int pointer = 0;
++pointer;
if(pointer >= 600)
pointer -= 600;
可以避免反复求余的预处理效率损失。
最后第15个点跑了500ms左右……
Code
#include <cstdio>
#include <cstring>
using namespace std;
int n, k;
int dp[610][610];
int *f[200100];
inline int min(const int &a,const int &b){return a<b?a:b;}
int main()
{
scanf("%d%d", &n, &k);
int p = 0;
for (int i = 0; i <= n; ++i)
{
if (p >= 600)
p -= 600;
f[i] = dp[p + 1];
++p;
}
f[0][0] = 1;
int i, j;
for (i = 1; i <= n; ++i)
{
memset(f[i], 0, sizeof(f[i]));
for (j = min(k,i); j; --j)
f[i][j] = (f[i - j][j] + f[i - 1][j - 1]) % 10086;
}
printf("%d", f[n][k]);
return 0;
}
[LuoguP1025][数据加强]数的划分的更多相关文章
- luoguP1025+codevs 1039 数的划分 x
luoguP1025 + codevs1039 数的划分 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Des ...
- C语言 · 数的划分
算法训练 数的划分 时间限制:1.0s 内存限制:256.0MB 锦囊1 使用动态规划. 锦囊2 用F[i,j,k]表示将i划分成j份,最后一份为k的方案数,则F[i,j,k]= ...
- dp练习(8)——数的划分
1039 数的划分 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 将整数 ...
- codevs——1039 数的划分
1039 数的划分 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 将整数 ...
- Java实现 蓝桥杯VIP 算法提高 数的划分
算法提高 数的划分 时间限制:1.0s 内存限制:256.0MB 问题描述 一个正整数可以划分为多个正整数的和,比如n=3时: 3:1+2:1+1+1: 共有三种划分方法. 给出一个正整数,问有多少种 ...
- Oracle 查询库中所有表名、字段名、字段名说明,查询表的数据条数、表名、中文表名、
查询所有表名:select t.table_name from user_tables t;查询所有字段名:select t.column_name from user_col_comments t; ...
- 查看SqlAzure和SQLServer中的每个表数据行数
SqlAzure中的方式: select t.name ,s.row_count from sys.tables t join sys.dm_db_partition_stats s ON t.obj ...
- jquery通过ajax获取数据,控制显示的数据条数
效果图: 现在我们可以先看它的json数据,如图所示: 然后可以对应我们的代码进行理解. jquery通过ajax获取数据,并通过窗口大小控制显示的数据条数,以及可以根据 ...
- NOIP2001 数的划分
题二 数的划分(20分) 问题描述 将整数n分成k份,且每份不能为空,任意两份不能相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问 ...
随机推荐
- java.lang.NoClassDefFoundError异常处理
1.异常信息: Caused by: java.lang.NoClassDefFoundError: com/pingan/cfss/monitor/user/controller/UserInfoC ...
- js屏幕上下滚动条
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- 【原】python总结
python3浅拷贝和深拷贝:https://www.jianshu.com/p/c7e72fcad407
- 20200213springboot日记
------------恢复内容开始------------ ------------恢复内容开始------------ ------------恢复内容开始------------ 数据库管理 L ...
- LinkStack(链栈)
链栈即链式栈,也就是说我们不用再考虑空间的大小,可随心所欲的进行数据的插入/删除了.和顺序栈一样,仍然要保持其stack的特性,只在一端进行插入和删除,后进先出. (2018-02-14 代码更新) ...
- linux动态监控dstat&&glances&&psutil&&bottle
安装dstat yum install dstat 安装glances yum install python-devel pip install glances 如果我们安装了 Bottle 这个 w ...
- 当在命令行中执行virtualenv venv时报此错误:'utf-8' codec can't decode byte 0xd5 in position 38: invalid continuation by
1.windows中安装虚拟环境virtualenv时, 当在命令行中执行virtualenv venv时报此错误:'utf-8' codec can't decode byte 0xd5 in po ...
- 【规范建议】服务端接口返回字段类型与iOS端的解析
一.本文档的写作目的 App需要跟产品.UI.后台.服务器.测试打交道,app的产出是其他端人员产出的综合体现.与其他端人员沟通就像是开发写接口,也就是面向接口编程的思想. 本文档讲解针对的是服务端返 ...
- springboot devtool热部署的一个大坑
spring.devtools.restart.poll-interval=3000ms spring.devtools.restart.quiet-period=2999ms 别问我为什么,问就是一 ...
- 基于贝叶斯模型和KNN模型分别对手写体数字进行识别
首先,我们准备了0~9的训练集和测试集,这些手写体全部经过像素转换,用0,1表示,有颜色的区域为0,没有颜色的区域为1.实现代码如下: # 图片处理 # 先将所有图片转为固定宽高,比如32*,然后再进 ...