算法复杂度主方法

有时候,我们要评估一个算法的复杂度,但是算法被分散为几个递归的子问题,这样评估起来很难,有一个数学公式可以很快地评估出来。

一、复杂度主方法

主方法,也可以叫主定理。对于那些用分治法,有递推关系式的算法,可以很快求出其复杂度。

定义如下:

如果对证明感兴趣的可以翻阅书籍:《算法导论》。如果觉得太难思考,可以跳过该节。

由于主定理的公式十分复杂,所以这里有一种比较简化的版本来计算:

二、举例

  1. 二分搜索,每次问题规模减半,只查一个数,递推过程之外的查找复杂度为O(1),递推运算时间公式为:T(n) = T(n/2) + O(1)
  2. 快速排序,每次随机选一个数字作为划分进行排序,每次问题规模减半,递推过程之外的排序复杂度为O(n),递推运算时间递推公式为:T(n) = 2T(n/2) + O(n)

按照简化版的主定理,可以知道:

二分查找:a = 1,b = 2,d = 0,可以知道a = b^d,所以二分查找的时间复杂度为:O(logn)

快速排序:a = 2,b = 2,d = 1,可以知道a = b^d,所以快速排序的时间复杂度为:O(nlogn)

强调:并非所有递推关系式都可应用主定理,但是大部分情况下都可以。

因为需要较多的数学知识,所以我们只简单介绍到这里。

延伸-计算理论:P和NP问题

在计算机科学中,有一个专门的分支研究问题的可计算性,叫做计算理论。

我们用计算机算法来解决一个问题,如果一个问题被证明很难计算,或者只能暴力枚举来解决,那么我们就不必花大力气去质疑使用的算法是不是错了,为什么这么慢,计算怎么久都没出结果,到底有没有更好的算法。

计算机科学把一个待解决的问题分类为:P问题,NP问题,NPC问题,NP-hard问题。

一、P 和 NP 问题

类似于O(1)O(logn)O(n)等复杂度,规模n出现在底数的位置,计算机能在多项式时间解决,我们称为多项式级的复杂。

类似于O(n!)O(2^n)等复杂度,规模n出现在顶部的位置,计算机能在非多项式时间解决,我们称为非多项式级的复杂度。

如果一个问题,可以用一个算法在多项式时间内解决,它称为P问题(PPolynominal的缩写,多项式)。

比如求1加到100的总和,它的时间复杂度是O(n),是多项式时间。

然而有些问题,只能用枚举的方式求解,时间复杂度是指数级别,非多项式时间,但是只要有一个解,我们能在多项式时间验证这个解是对的,这类问题称为NP问题。

也就是说,如果我们只能靠猜出问题的一个解,然后可以用多项式时间来验证这个解,这些问题都是NP问题。

所以,按照定义,所有的P问题都是NP问题。

计算理论延伸出了图灵机理论,自动机=算法。

有两种自动机,一种是确定性自动机,机器从一个状态到另外一个状态的变化,只有一个分支可以走,而非确定性自动机,从一个状态到另外一个状态,有多个分支可以走。P问题都可以用两种机器来解决,当非确定性自动机退化就变成了确定性自动机,而NP问题只能用非确定性自动机来解决。

自动机对NNP问题的定义:

可以在确定性自动机以多项式时间解决的问题,称为P问题,可以在多项式时间验证答案的问题称为NP问题。而NP问题是可以在非确定型自动机以多项式时间解决的问题(NP两字为Non-deterministicPolynomial的缩写,非确定多项式)。

数学,计算机科学,哲学,三个学科其实交融在一起,自动机是一台假想的机器,世界其实也可以认为是一个假想的机器,所以世界可以等于一台自动机吗,大家可以发挥想象力,在以后的日子里慢慢体会,建议购买书籍《计算理论》补习相关知识。

二、NPC 和 NP-hard 问题

存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。其定义要满足2个条件:

  1. 它得是一个NP问题。
  2. 所有的NP问题都可以约化到它。

这种问题称为NP完全问题(NPC)。按照这种定义,NP问题要比NPC问题的范围广。

那什么是NP-hard问题,其定义要满足2个条件:

  1. 所有的NP问题都可以约化到它。
  2. 它不是一个NP问题。

也就是说,NP-hard问题更难,你只要解决了NP-hard问题,那么所有的NP问题都可以解决。但是,这个问题本身不是一个NP问题,也就是解不能在多项式时间内被验证。

比如你有一个交际网,每个人是一个节点,认识的人之间相连。你要通过一个最快、最省钱、最能提升你个人形象、最没有威胁、最不影响你日常生活的方式认识一个萌妹,你怎么证明你认识这个萌妹是最省钱的呢?-来自知乎回答。

我们一旦发现一个问题是NPC问题,那么我们很难去准确求出其解,只能暴力枚举,靠猜。

三、总结

各类问题可以用这个图来表示:

"P=NP" 问题的目标,就是想要知道PNP这两个集合是否相等。为了证明两个集合(AB)相等,一般都要证明两个方向:

  1. A包含B
  2. B包含A

我们已经说过NP包含了P。因为任何一个非确定性机器,都能被当成一个确定性的机器来用。你只要不使用它的“超能力”,在每个分支点只探索一条路径就行。

所以 "P=NP" 就在于P是否也包含了NP。也就是说,如果只使用确定性计算机,能否在多项式时间之内,解决所有非确定性计算机能在多项式时间内解决的问题。

系列文章入口

我是陈星星,欢迎阅读我亲自写的 数据结构和算法(Golang实现),文章首发于 阅读更友好的GitBook

数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法的更多相关文章

  1. 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号

    算法复杂度及渐进符号 一.算法复杂度 首先每个程序运行过程中,都要占用一定的计算机资源,比如内存,磁盘等,这些是空间,计算过程中需要判断,循环执行某些逻辑,周而反复,这些是时间. 那么一个算法有多好, ...

  2. 数据结构和算法(Golang实现)(4)简单入门Golang-结构体和方法

    结构体和方法 一.值,指针和引用 我们现在有一段程序: package main import "fmt" func main() { // a,b 是一个值 a := 5 b : ...

  3. C#基础知识学习(1)方法的重写和隐藏

    做了1年多了C#,发现些项目过程中很多基础东西都不是很清晰,基础不够牢固.现在开始复习基础知识并做重点记录 方法需要被重写的时候,可以在方法前加入virtual使方法变成虚方法. 这样我们可以重新写个 ...

  4. 算法导论 - 基础知识 - 算法基础(插入排序&归并排序)

    在<算法导论>一书中,插入排序作为一个例子是第一个出现在该书中的算法. 插入排序: 对于少量元素的排序,它是一个有效的算法. 插入排序的工作方式像许多人排序一手扑克牌.开始时,我们手中牌为 ...

  5. 1.10 基础知识——GP3.1 制度化 & GP3.2 收集改进信息

    摘要: GP3.1是要求建立组织级的关于该过程的制度.标准.模版等全套体系,要求覆盖该PA所有的SP和GP.GP3.2 体现的是持续改进,每个过程都应该收集相应的改进信息. 正文: GP3.1 Est ...

  6. Oracle优化器基础知识之访问数据的方法

    目录 一.访问数据的方法 1.直接访问数据 2.访问索引 一.访问数据的方法 Oracle访问表中数据的方法有两种,一种是直接表中访问数据,另外一种是先访问索引,如果索引数据不符合目标SQL,就回表, ...

  7. python基础知识02-序列类型的方法

    列表的方法: 增:append() insert() extend()只能添加序列类型. .改li[0]= '123' li.insert(2,'123') 2个参数,位置,值 li.remove(' ...

  8. scrapy基础知识之 使用FormRequest.from_response()方法模拟用户登录:

    通常网站通过 实现对某些表单字段(如数据或是登录界面中的认证令牌等)的预填充 使用Scrapy抓取网页时,如果想要预填充或重写像用户名.用户密码这些表单字段, 可以使用 FormRequest.fro ...

  9. python基础知识五 各类型数据方法补充,转换,分类,编码+坑中菜

    3.9各类型数据方法补充,转换,分类,编码,坑中菜 3.9.1数据类型方法补充 1.str:不可变 补充方法 s1.capitalize():首字母大写 s1 = "alex" s ...

随机推荐

  1. Js中的For循环详解

    大家好,我是逆战班的一员,今天给大家讲解一下Js循环中的For循环. For循环是JS循环中一个非常重要的部分. 我们先讲一下for循环的作用: For循环用在需要重复执行的某些代码,比如从1打印到1 ...

  2. iframe框架及优缺点

    iframe框架及优缺点 HTML5不再支持使用frame,关于frame与iframe的区别,可以参阅 iframe与frame的区别 基本使用 src:规定在iframe中显示的文档的URL. f ...

  3. 手机抓包HTTPS (Fiddler & Packet Capture)

    手机抓包HTTPS (Fiddler & Packet Capture) 以前写了一个小游戏(消灭病毒)的刷金币小脚本,使用需要获取openid ,就需要抓微信的HTTPS包 一直都是用Fid ...

  4. asp.net core系列 76 Apollo 快速安装模式下填坑和ASP.NetCore结合使用

    前言:由于公司占时没有运维,出于微服务的需要,Apollo只能先装在windows 阿里云上跑起来,由于环境及网络等问题,在安装过程中遇到很多坑,算是一个个坑填完后,最终实现. 一. java jdk ...

  5. JAVA开发中如何优化类的设计

    具体类依赖于抽象类,而非抽象类依赖于具体类.这样做有利于一个抽象类扩展多个具体类. 开放封闭原则:对扩展开放,对修改封闭. 1.永远保持数据私有 保持数据的私有是设计类时,必须重点考虑的问题.保持私有 ...

  6. rest_framework序列化,反序列化

    序列化组件 from rest_framework.response import Response1.Response本质也是继承了httpresponse,比httpResponse还强大,传入一 ...

  7. hdu1532 用BFS求拓扑排序

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1285 题目给出一些点对之间的先后顺序,要求给出一个字典序最小的拓扑排列.对于拓扑排序的问题,我们有DF ...

  8. Mac下 eclipse target runtime com.genuitec.runtime 解决方法

    Mac下 eclipse target runtime com.genuitec.runtime 解决方法 解决步骤如下: 首先是找到工程项目一个名叫.settings的文件夹,里面有个叫 org.e ...

  9. 面试刷题28:如何写出安全的java代码?

    对jdk,jvm,java应用程序的攻击多种多样?那么从java程序员的角度,如何写出安全的代码呢? 我是李福春,我在准备面试,今天的题目是:如何写出安全的java代码? 答:这个需要从功能设计到实现 ...

  10. CSS基础总结 1

    一.什么是 CSS? CSS 指层叠样式表 (Cascading Style Sheets),是一种用来表现 HTML 文档样式的语言,样式定义如何显示 HTML 元素,是能够真正做到网页表现与结构分 ...