Memcached的优点:
Memcached可以利用多核优势,单实例吞吐量极高,可以达到几十万QPS(取决于key、value的字节大小以及服务器硬件性能,日常环境中QPS高峰大约在4-6w左右)。适用于最大程度扛量。
支持直接配置为session handle。
Memcached的局限性:
只支持简单的key/value数据结构,不像Redis可以支持丰富的数据类型。
无法进行持久化,数据不能备份,只能用于缓存使用,且重启后数据全部丢失。
无法进行数据同步,不能将MC中的数据迁移到其他MC实例中。
Memcached内存分配采用Slab Allocation机制管理内存,value大小分布差异较大时会造成内存利用率降低,并引发低利用率时依然出现踢出等问题。需要用户注重value设计。
>>Redis
Redis的优点:
支持多种数据结构,如 string(字符串)、 list(双向链表)、dict(hash表)、set(集合)、zset(排序set)、hyperloglog(基数估算)
支持持久化操作,可以进行aof及rdb数据持久化到磁盘,从而进行数据备份或数据恢复等操作,较好的防止数据丢失的手段。
支持通过Replication进行数据复制,通过master-slave机制,可以实时进行数据的同步复制,支持多级复制和增量复制,master-slave机制是Redis进行HA的重要手段。
单线程请求,所有命令串行执行,并发情况下不需要考虑数据一致性问题。
支持pub/sub消息订阅机制,可以用来进行消息订阅与通知。
支持简单的事务需求,但业界使用场景很少,并不成熟。
Redis的局限性:
Redis只能使用单线程,性能受限于CPU性能,故单实例CPU最高才可能达到5-6wQPS每秒(取决于数据结构,数据大小以及服务器硬件性能,日常环境中QPS高峰大约在1-2w左右)。
支持简单的事务需求,但业界使用场景很少,并不成熟,既是优点也是缺点。
Redis在string类型上会消耗较多内存,可以使用dict(hash表)压缩存储以降低内存耗用。
Mc和Redis都是Key-Value类型,不适合在不同数据集之间建立关系,也不适合进行查询搜索。比如redis的keys pattern这种匹配操作,对redis的性能是灾难。
>>mongoDB [/B]
mongoDB 是一种文档性的数据库。先解释一下文档的数据库,即可以存放xml、json、bson类型系那个的数据。
这些数据具备自述性(self-describing),呈现分层的树状数据结构。redis可以用hash存放简单关系型数据。
mongoDB 存放json格式数据。
适合场景:事件记录、内容管理或者博客平台,比如评论系统。[/I]
1.mongodb持久化原理
mongodb与mysql不同,mysql的每一次更新操作都会直接写入硬盘,但是mongo不会,做为内存型数据库,数据操作会先写入内存,然后再会持久化到硬盘中去,那么mongo是如何持久化的呢
mongodb在启动时,专门初始化一个线程不断循环(除非应用crash掉),用于在一定时间周期内来从defer队列中获取要持久化的数据并写入到磁盘的journal(日志)和mongofile(数据)处,当然因为它不是在用户添加记录时就写到磁盘上,所以按mongodb开发者说,它不会造成性能上的损耗,因为看过代码发现,当进行CUD操作时,记录(Record类型)都被放入到defer队列中以供延时批量(groupcommit)提交写入,但相信其中时间周期参数是个要认真考量的参数,系统为90毫秒,如果该值更低的话,可能会造成频繁磁盘操作,过高又会造成系统宕机时数据丢失过。
2.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟度;支持;分析和商业智能;管理及专业性等问题时,应优先考虑关系型数据库。
3.MySQL和MongoDB之间最基本的区别是什么?
关系型数据库与非关系型数据库的区别,即数据存储结构的不同。
4.MongoDB的特点是什么?
(1)面向文档(2)高性能(3)高可用(4)易扩展(5)丰富的查询语言
5.MongoDB支持存储过程吗?如果支持的话,怎么用?
MongoDB支持存储过程,它是javascript写的,保存在db.system.js表中。
6.如何理解MongoDB中的GridFS机制,MongoDB为何使用GridFS来存储文件?
GridFS是一种将大型文件存储在MongoDB中的文件规范。使用GridFS可以将大文件分隔成多个小文档存放,这样我们能够有效的保存大文档,而且解决了BSON对象有限制的问题。
7.为什么MongoDB的数据文件很大?
MongoDB采用的预分配空间的方式来防止文件碎片。
8.当更新一个正在被迁移的块(Chunk)上的文档时会发生什么?
更新操作会立即发生在旧的块(Chunk)上,然后更改才会在所有权转移前复制到新的分片上。
9.MongoDB在A:{B,C}上建立索引,查询A:{B,C}和A:{C,B}都会使用索引吗?
不会,只会在A:{B,C}上使用索引。
10.如果一个分片(Shard)停止或很慢的时候,发起一个查询会怎样?
如果一个分片停止了,除非查询设置了“Partial”选项,否则查询会返回一个错误。如果一个分片响应很慢,MongoDB会等待它的响应。
从以下几个维度,对redis、memcache、mongoDB 做了对比
1、性能
都比较高,性能对我们来说应该都不是瓶颈
总体来讲,TPS方面redis和memcache差不多,要大于mongodb
2、操作的便利性
memcache数据结构单一
redis丰富一些,数据操作方面,redis更好一些,较少的网络IO次数
mongodb支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富
3、内存空间的大小和数据量的大小
redis在2.0版本后增加了自己的VM特性,突破物理内存的限制;可以对key value设置过期时间(类似memcache)
memcache可以修改最大可用内存,采用LRU算法
mongoDB适合大数据量的存储,依赖操作系统VM做内存管理,吃内存也比较厉害,服务不要和别的服务在一起
4、可用性(单点问题)
对于单点问题,
redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整个快照,无增量复制,因性能和效率问题,
所以单点问题比较复杂;不支持自动sharding,需要依赖程序设定一致hash 机制。
一种替代方案是,不用redis本身的复制机制,采用自己做主动复制(多份存储),或者改成增量复制的方式(需要自己实现),一致性问题和性能的权衡
Memcache本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的hash或者环状的算法,解决单点故障引起的抖动问题。
mongoDB支持master-slave,replicaset(内部采用paxos选举算法,自动故障恢复),auto sharding机制,对客户端屏蔽了故障转移和切分机制。
5、可靠性(持久化)
对于数据持久化和数据恢复,
redis支持(快照、AOF):依赖快照进行持久化,aof增强了可靠性的同时,对性能有所影响
memcache不支持,通常用在做缓存,提升性能;
MongoDB从1.8版本开始采用binlog方式支持持久化的可靠性
6、数据一致性(事务支持)
Memcache 在并发场景下,用cas保证一致性
redis事务支持比较弱,只能保证事务中的每个操作连续执行
mongoDB不支持事务
7、数据分析
mongoDB内置了数据分析的功能(mapreduce),其他不支持
8、应用场景
redis:数据量较小的更性能操作和运算上
memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写少,对于数据量比较大,可以采用sharding)
MongoDB:主要解决海量数据的访问效率问题
- 关于 redis、memcache mongoDB 的对比
from:http://yang.u85.us/memcache_redis_mongodb.pdf 从以下几个维度,对 redis.memcache.mongoDB 做了对比.1.性能都比较高,性能 ...
- 关于mongodb ,redis,memcache
先说我自己用的情况: 最先用的memcache ,用于键值对关系的服务器端缓存,用于存储一些常用的不是很大,但需要快速反应的数据 然后,在另一个地方,要用到redis,然后就去研究了下redis. 一 ...
- memcache、redis、mongoDB 如何选择?
不同的 Nosql,其实应用的场景各有不同,所以我们应该先了解不同Nosql 之间的差别,然后分析什么才是最适合我使用的 Nosql. Nosql 介绍 Nosql 的全称是 Not Only Sql ...
- mongodb redis memcache 对比
从以下几个维度,对 Redis.memcache.MongoDB 做了对比. 1.性能 都比较高,性能对我们来说应该都不是瓶颈. 总体来讲,TPS 方面 redis 和 memcache 差不多,要大 ...
- 关于mongodb ,redis,memcache之间见不乱理还乱的关系和作用
先说我自己用的情况: 最先用的memcache ,用于键值对关系的服务器端缓存,用于存储一些常用的不是很大,但需要快速反应的数据 然后,在另一个地方,要用到redis,然后就去研究了下redis. 一 ...
- 网站缓存技术总结( ehcache、memcache、redis对比)
网站技术高速发展的今天,缓存技术已经成为大型网站的一个关键技术,缓存设计好坏直接关系的一个网站访问的速度,以及购置服务器的数量,甚至影响到用户的体验. 网站缓存按照存放的地点不同,可以分为客户端缓存. ...
- Memcache服务器端+Redis服务器端+PHP Memcache扩展+PHP Memcached扩展+PHP Redis扩展+MemAdmin Memcache管理工具+一些概念(更新中)
Memcache和Redis因为操作简单,是我们常用的服务器数据缓存系统,以下文字仅作备忘记录,部份转载至网络. 一.定义 1.Memcache Memcache是一个高性能的分布式的内存对象缓存系统 ...
- ehcache、memcache、redis三大缓存比较
最近项目组有用到这三个缓存,去各自的官方看了下,觉得还真的各有千秋!今天特意归纳下各个缓存的优缺点,仅供参考! Ehcache 在Java项目广泛的使用.它是一个开源的.设计于提高在数据从RDBMS ...
- ehcache、memcache、redis三大缓存比较(转)
最近项目组有用到这三个缓存,去各自的官方看了下,觉得还真的各有千秋!今天特意归纳下各个缓存的优缺点,仅供参考! Ehcache 在Java项目广泛的使用.它是一个开源的.设计于提高在数据从RDBMS ...
- memcache and redis 的区别
memcache和redis都属于缓存但是memcache的存储大小是收到 限制的memcache的 键值长度是250,内存的大小限制是1M并且memcache不支持数据的持久化缓存 redis支持五 ...
随机推荐
- Java线程及其实现方式
一.线程&多线程 线程: 线程是进程的一个实体,是 CPU 调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程 自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序 ...
- (3)SQL Server表分区
1.简介 当一个表数据量很大时候,很自然我们就会想到将表拆分成很多小表,在执行查询时候就到各个小表去查,最后汇总数据集返回给调用者加快查询速度.比如电商平台订单表,库存表,由于长年累月读写较多,积累数 ...
- DHCP完整过程详解及Wireshark抓包分析
DHCP,Dynamic Host Configuration Protocol,动态主机配置协议,简单来说就是主机获取IP地址的过程,属于应用层协议. DHCP采用UDP的68(客户端)和67(服务 ...
- Cacti监控服务
Cacti监控服务 案例1:部署Cacti监控平台 案例2:构建Cacti监测系统 1 案例1:部署Cacti监控平台 1.1 问题 本案例要求部署一台Cacti监控主机,并安装相关监控组件,为进一步 ...
- SpringCloud Alibaba01-Nacos
全家桶介绍: https://spring-cloud-alibaba-group.github.io/github-pages/greenwich/spring-cloud-alibaba.html ...
- 【C#】写一个支持多人聊天的TCP程序
碎碎念 先谈谈我们要实现的效果:客户端可以选择要聊天的对象,或者直接广播消息(类似QQ的私聊和群消息) 那么,该如何实现呢? 首先明确的是,要分客户端和服务器端两个部分(废话) 客户端:选择要发送的对 ...
- 22 Extends 继承(子类、父类)
本章主要介绍继承的 概念.方法重写(@Override注解的使用).使用场景.方法的执行顺序 /*1.继承的 概念 * 继承:多个类有共同的成员变量和成员方法,抽取到另外一个类中(父类),在让多个类去 ...
- 20 java 基础回顾--中阶引入
一.数据类型 基本数据类型(共:四类八种) 整数 byte short int long 浮点 float double 字符 char 布尔 boolean 引用数据类型(new的数据) Stude ...
- 数据结构和算法(Golang实现)(11)常见数据结构-前言
常见数据结构及算法 数据结构主要用来组织数据,也作为数据的容器,载体. 各种各样的算法,都需要使用一定的数据结构来组织数据. 常见的典型数据结构有: 链表 栈和队列 树 图 上述可以延伸出各种各样的术 ...
- CSS也能计算:calc
举个例子ul li适配屏幕,如果加个border:1px,不用border-content得情况下,每个li多加了2px: <ul><li></li><li& ...