这一篇写完很久了,因为识别率一直很低,没办法拿出来见大家,所以一直隐藏着,今天终于可以拿出来见见阳光了。

哈喽,大家好,我是星星在线,我又来了,今天给大家带来的是极验验证码的selenium破解之法,是不是有点小激动呢,小伙伴们等不了了,让我们赶紧直入主题吧。

虎嗅网注册

这次我们是拿虎嗅开刀,注册账号的时候需要滑动图片到缺口位置,这种验证码我们现在也经常遇到,这个就不用详细介绍了吧

针对这种验证码我们首先确定了使用selenium模拟滑动破解方式,selenium鼠标移动点击拖动都比较简单,那么问题就在于拖动多少距离,眼睛看起来很直观,但是程序怎么获取呢?利用图像识别......,额,这个只能想想了吧。不如看看网页源码或者请求信息,看看有没有有效的信息。

查看网页信息

鼠标右键点击到图片上,查看元素

这一瞬间的图片,还好我二十几年的麒麟臂没白练,我们看看元素查看到的都是什么东西

这看起来有点奇怪哦,有个图片链接,还有位置信息,而且还那么多,先把图片链接拷贝到浏览器里访问下看看



WF,这是什么鬼?注意到那个像猪尾巴一样的6了吗?还有那个小箭头,跟上面完整图片对比一下,发现把箭头挪动到小6旁边,猪尾巴就成功了。当然你仔细观察的话,还有其他的比如文字也是类似。那么我们可以确认这张图片应该是被打乱的,如果我们可以把它拼起来,是不是就离计算缺口位置比较近了。现在我们应该要注意到元素查看里后面的位置信息了,那么多,看起来应该跟这个打乱顺序有点关系吧。我们来确认一下。我的想法是这样子的,既然这个位置和拼图有关,而且再看我们上面麒麟臂截的图,我再标记一下



我们点击查看元素的时候,浏览器会帮我们突出显示一下,本来我是在图片上点击查看的,按照我的想法,它不是应该整张图片突出显示一下吗?看起来好像不是这么回事,只有那么一小部分,而且上面还有元素信息,宽高类名,再回去看看图3,位置坐标里,前面应该是x轴,后面是y轴,y轴只有58和0,再根据图2一看,图片分为上下两部分,再数一下div的数量,26块,每一块宽10x高58。按照这个来算的话,那么整个图片的宽就是260,高116,用截图工具去拉一下图片的宽高,基本吻合



接下来就是确定怎么拼了。这里很抱歉的告诉大家,猪没了,等我写到这里再去查看网页的时候,图片已经刷新了。所以接下来的截图可能不一样,在这里提前跟大家说明一下。反正就是找特征点嘛,每个图片应该都有的。先随便找一个特征点,查看元素,看它定位到那个div元素那里,然后再看看后面的位置。基本就是这样,所以我们找图片既然和位置有关,那么我们最好选一些位置明显的地方,比如中间,或者两边。



这个差不多算中间位置了吧,查那么一点点无所谓了



我去,这......跟我想的不太一样呀,再找两张看看,代表性及其强烈的









为了防止有人说我水字数,另外两个角就不截图了。到这一步可能有人纳闷了,为啥?你刚才说图片宽度260,为什么坐标里出现了289这样的坐标,这不就是超标了吗?一开始我也有这样的疑惑,可能我们看到图片比实际的小,也许人家在图片外面还留了边框呢,我一开始是这么想的。但是这个坐标是前面url里面的图片坐标,然后我就去看了一下图4



这个图片尽然比较大,坐标问题有答案了,但是这个跟260有什么关系呢?打乱的图片比较大,拼好的小,那它是怎么拼的呢?幸好我们看到了一个比较有用信息

看到这个-1px了吗?它成功引起了我的注意,因为按照我的想法,如果是从拼图里拿出一部分拼成一个完成图片的话,那么最左边拿出来的图片,应该是从(0,0),(0,58),但是我们看到的是(1,0),(1,58),y值还是比较符合我们的预期的,第一部分从0开始,高58,第二部分从58开始。但是x值有点问题,按照1作为起点,那第二个应该是11,因为宽度是10,这是确定的,我们找找看

是13,难道每一小块前面都多余了1个像素?按照这种的话也应该是12呀,按照这种方式我们继续找一找剩下的,通过分析我们发现每个小块+12作为下一个小块的起点。这样的话左右各去掉一个像素,宽度不就是10了吗?而且每个小块是12,26个是312,跟我们看到的拼图大小差不多,说明我们分析的是正确的。按照元素里提供的坐标,取宽度为10的大小即可。接下来分析一下这些坐标的意义。

坐标分析

分析一下我们图9到图12的截图,首先说图9,我本来觉得它x、y应该是0,就算不是0,也应该是各位数字吧,结果的y是58,这个算到下半截图片区域了,x是157,跑中场去了。图11呢,你的x应该在300左右,y应该100以上吧,结果y是0,到上半段,x是205,在中场偏后,离守门员还远呢。这是怎么肥事?不过我们发现了,图9在元素里是第一个,图11在元素里是最后一个,再结合坐标前面的y值全是58,后面的y值全是0,符合我们上半段下半段颠倒的想法了,然后你再分别查看图9右边/图11左边的元素就会发现,和元素里面div的顺序一样。到这里就差不多了。

总结一下:最终的图片就是把拼图,即图4,按照x=157、y=58、w=10、h=58截取出来,放在上半部分第一个位置,x=145、y=58、w=10、h=58截取出来放在上半部分第二个位置,紧挨着第一个,以此类推,拼成一张整图。



这个就是我拼出来的,恩,很好,很不错嘛小伙子。不过好像哪里不对,缺口嘞。仔细看看网页元素



原来一个是fullbg,一个是cutbg,这个名字就很有寓意嘛,那就好了,再把cutbg拼一下看看



这回就对上了。现在的问题就变成怎么计算缺口位置了

缺口位置

我觉得可能会有计算两张图片不同位置的方式吧,度娘来一发,然后获取了python实战===用python对比两张图片的不同,然后发现了ImageChops.difference这个接口,结果你们知道的,不准确,为啥捏?仔细看拼好的两张图,除了缺口还有其他地方不一样呀。看到图16缺口后面那个阴影没,让我的心里蒙上了一层阴影,再观察其他的图片,基本都有类似的,这可怎么办?这在后面还好说,如果是在前面呢,那不就计算到阴影里去了嘛。如果这个对比有一个容差就好了,我以前用按键精灵的时候好像就有这种嘛,这个好不智能呀。既然它是对比像素,我直接取像素对比一下不就得了,而且我还不给它用==,给它一个范围,如果色差在这个范围内就算一样了,这样不就有容差了吗?这个缺口一般都非常明显,而阴影跟背景又很模糊,应该是可行的。思路就是获取图片的宽高,然后一个像素一个像素的遍历对比。

色差

这个色差怎么确定?一种方式就是调试,这种是比较麻烦的,还有一种方式就是获取多张图片,全图和缺陷图,然后使用取色工具,取对应位置的颜色值,确定一个大概范围。距离确定了,下面就是移动了

selenium模拟移动

selenium的模拟操作网上介绍很多,这里我们只要确认需要哪些接口就行了。

ActionChains方法:

  • move_to_element(to_element) - 鼠标移动到某个元素
  • click_and_hold(on_element =None) - 点击鼠标左键,不松开
  • move_by_offset(xoffset,yoffset) - 鼠标从当前位置移动到某个坐标
  • release(on_element = None) - 在某个元素位置松开鼠标左键
  • perform() - 执行操作,记住这个很重要,调用上面的方法后,一定要执行perform才能真正执行

selenium的操作我就不详细描述了,这里用到的都是比较简单的用法。

原理分析就完了,这一次必须要贴代码了,否则可能很多人完成不了,也有利于大家的理解。

# -*- coding: utf-8 -*-
import random
import time, re
from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.common.by import By
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.action_chains import ActionChains
from PIL import Image
import requests
from io import BytesIO class HuXiu(object):
def __init__(self):
chrome_option = webdriver.ChromeOptions()
# chrome_option.set_headless() self.driver = webdriver.Chrome(executable_path=r"/usr1/webdrivers/chromedriver", chrome_options=chrome_option)
self.driver.set_window_size(1440, 900) def visit_index(self):
self.driver.get("https://www.huxiu.com/") WebDriverWait(self.driver, 10, 0.5).until(EC.element_to_be_clickable((By.XPATH, '//*[@class="js-register"]')))
reg_element = self.driver.find_element_by_xpath('//*[@class="js-register"]')
reg_element.click() WebDriverWait(self.driver, 10, 0.5).until(EC.element_to_be_clickable((By.XPATH, '//div[@class="gt_slider_knob gt_show"]'))) # 进入模拟拖动流程
self.analog_drag() def analog_drag(self):
#鼠标移动到拖动按钮,显示出拖动图片
element = self.driver.find_element_by_xpath('//div[@class="gt_slider_knob gt_show"]')
ActionChains(self.driver).move_to_element(element).perform()
time.sleep(3) # 刷新一下极验图片
element = self.driver.find_element_by_xpath('//a[@class="gt_refresh_button"]')
element.click()
time.sleep(1) # 获取图片地址和位置坐标列表
cut_image_url, cut_location = self.get_image_url('//div[@class="gt_cut_bg_slice"]')
full_image_url, full_location = self.get_image_url('//div[@class="gt_cut_fullbg_slice"]') # 根据坐标拼接图片
cut_image = self.mosaic_image(cut_image_url, cut_location)
full_image = self.mosaic_image(full_image_url, full_location) # 保存图片方便查看
cut_image.save("cut.jpg")
full_image.save("full.jpg") # 根据两个图片计算距离
distance = self.get_offset_distance(cut_image, full_image) # 开始移动
self.start_move(distance) # 如果出现error
try:
WebDriverWait(self.driver, 5, 0.5).until(EC.element_to_be_clickable((By.XPATH, '//div[@class="gt_ajax_tip gt_error"]')))
print("验证失败")
return
except TimeoutException as e:
pass # 判断是否验证成功
try:
WebDriverWait(self.driver, 10, 0.5).until(EC.element_to_be_clickable((By.XPATH, '//div[@class="gt_ajax_tip gt_success"]')))
except TimeoutException:
print("again times")
time.sleep(5)
# 失败后递归执行拖动
self.analog_drag()
else:
# 成功后输入手机号,发送验证码
self.register() # 获取图片和位置列表
def get_image_url(self, xpath):
link = re.compile('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;')
elements = self.driver.find_elements_by_xpath(xpath)
image_url = None
location = list()
for element in elements:
style = element.get_attribute("style")
groups = link.search(style)
url = groups[1]
x_pos = groups[2]
y_pos = groups[3]
location.append((int(x_pos), int(y_pos)))
image_url = url
return image_url, location # 拼接图片
def mosaic_image(self, image_url, location):
resq = requests.get(image_url)
file = BytesIO(resq.content)
img = Image.open(file)
image_upper_lst = []
image_down_lst = []
for pos in location:
if pos[1] == 0:
# y值==0的图片属于上半部分,高度58
image_upper_lst.append(img.crop((abs(pos[0]), 0, abs(pos[0]) + 10, 58)))
else:
# y值==58的图片属于下半部分
image_down_lst.append(img.crop((abs(pos[0]), 58, abs(pos[0]) + 10, img.height))) x_offset = 0
# 创建一张画布,x_offset主要为新画布使用
new_img = Image.new("RGB", (260, img.height))
for img in image_upper_lst:
new_img.paste(img, (x_offset, 58))
x_offset += img.width x_offset = 0
for img in image_down_lst:
new_img.paste(img, (x_offset, 0))
x_offset += img.width return new_img # 判断颜色是否相近
def is_similar_color(self, x_pixel, y_pixel):
for i, pixel in enumerate(x_pixel):
if abs(y_pixel[i] - pixel) > 50:
return False
return True # 计算距离
def get_offset_distance(self, cut_image, full_image):
for x in range(cut_image.width):
for y in range(cut_image.height):
cpx = cut_image.getpixel((x, y))
fpx = full_image.getpixel((x, y))
if not self.is_similar_color(cpx, fpx):
img = cut_image.crop((x, y, x + 50, y + 40))
# 保存一下计算出来位置图片,看看是不是缺口部分
img.save("1.jpg")
return x # 开始移动
def start_move(self, distance):
element = self.driver.find_element_by_xpath('//div[@class="gt_slider_knob gt_show"]') # 这里就是根据移动进行调试,计算出来的位置不是百分百正确的,加上一点偏移
distance -= element.size.get('width') / 2
distance += 15 # 按下鼠标左键
ActionChains(self.driver).click_and_hold(element).perform()
time.sleep(0.5)
while distance > 0:
if distance > 10:
# 如果距离大于10,就让他移动快一点
span = random.randint(5, 8)
else:
# 快到缺口了,就移动慢一点
span = random.randint(2, 3)
ActionChains(self.driver).move_by_offset(span, 0).perform()
distance -= span
time.sleep(random.randint(10,50)/100) ActionChains(self.driver).move_by_offset(distance, 1).perform()
ActionChains(self.driver).release(on_element=element).perform() def register(self):
element = self.driver.find_element_by_xpath('//input[@id="sms_username"]')
element.clear()
element.send_keys("手机号") ele_captcha = self.driver.find_element_by_xpath('//span[@class="js-btn-captcha btn-captcha"]')
ele_captcha.click() if __name__ == "__main__":
h = HuXiu()
h.visit_index()

这个移动move_by_offset,我之前的y值也是随机的[-5,5],我觉得这个模拟会更真实一点,总会上下抖动的嘛,结果就是因为这个考虑的太人性了,识别率非常低,改了好多范围,更大的、更小的,结果最后不偏移,竟然识别率奇高。TMD考虑的太人性化了竟然识别不了,我也是醉了。最后再把执行效果发一下吧


如果你觉得我的文章还可以,可以关注我的微信公众号:Python爬虫实战之路

也可以扫描下面二维码,添加我的微信号

极验验证码破解之selenium的更多相关文章

  1. 破解b站极验验证码

    这就是极验验证码,通过拖动滑块移动拼图来验证.我们观察到点击滑块时拼图才会出现,所以我们可以在点击滑块之前截取图像,点击滑块再截取一次图像,将前后两次图像做比较就可以找到图片改动的位置.获得位置后,我 ...

  2. 潭州课堂25班:Ph201805201 爬虫基础 第十课 图像处理- 极验验证码 (课堂笔记)

    用 python 的  selenium  访问  https://www.huxiu.com/ 自动通过验证码 # -*- coding: utf-8 -*- # 斌彬电脑 # @Time : 20 ...

  3. vue中使用极验验证码(附demo)

    前言: vue中使用极验验证码,最好是在页面渲染的时候(mounted)进行验证码的初始化,然后在初始化回调中绑定触发弹出验证码的事件.这样在点击按钮或者进行特定操作时能够快速的弹出验证码. 关键代码 ...

  4. 极验验证码在php5.6.27下不显示

    PHP5.6需要改php.ini 去掉;always_populate_raw_post_data = -1的 :

  5. selenium+java破解极验滑动验证码

    摘要 分析验证码素材图片混淆原理,并采用selenium模拟人拖动滑块过程,进而破解验证码. 人工验证的过程 打开威锋网注册页面(https://passport.feng.com/?r=user/r ...

  6. selenium+java破解极验滑动验证码的示例代码

    转自: https://www.jianshu.com/p/1466f1ba3275 selenium+java破解极验滑动验证码 卧颜沉默 关注 2017.08.15 20:07* 字数 3085  ...

  7. 爬虫进阶教程:极验(GEETEST)验证码破解教程

    摘要 爬虫最大的敌人之一是什么?没错,验证码!Geetest作为提供验证码服务的行家,市场占有率还是蛮高的.遇到Geetest提供的滑动验证码怎么破?授人予鱼不如授人予渔,接下来就为大家呈现本教程的精 ...

  8. Python 破解极验滑动验证码

    Python 破解极验滑动验证码 测试开发社区  1周前 阅读目录 极验滑动验证码 实现 位移移动需要的基础知识 对比两张图片,找出缺口 获得图片 按照位移移动 详细代码 回到顶部 极验滑动验证码 以 ...

  9. Python——破解极验滑动验证码

    极验滑动验证码 以上图片是最典型的要属于极验滑动认证了,极验官网:http://www.geetest.com/. 现在极验验证码已经更新到了 3.0 版本,截至 2017 年 7 月全球已有十六万家 ...

随机推荐

  1. android studio 导入eclipse项目后的报错解决

    1.如何导入: 2.导入的时候会让你创建gradle,一直下一步,不用修改 3.编译, a.会报编码格式错误,如果有中文会报这个错,修改成utf-8 b.找不到类,解决办法 右键工程 引入外部的包,重 ...

  2. Java Web实现用户登录界面

    一.学习Java Web需要的技术: Java语言基础:算法基础.常用数据结构.编程规范. 掌握常见的数据结构和实用算法:培养良好的编程习惯. Java面向对象:封装.继承.多态等,面向对象程序设计, ...

  3. 量化投资_轻松实现MATLAB蒙特卡洛方法建模

    1 目录 * MATLAB随机数的产生 - Uniform,Normal & Custom distributions * 蒙特卡洛仿真 * 产生股票价格路径 * 期权定价 - 经典公式 - ...

  4. [USACO09MAR]Moon哞哞叫Moon Mooing(模拟)

    链接:https://ac.nowcoder.com/acm/contest/1086/F来源:牛客网 题目描述 A full moon casts some sort of spell on the ...

  5. 吴裕雄--天生自然 JAVA开发学习:文档注释

    /*** 这个类绘制一个条形图 * @author runoob * @version 1.2 */ import java.io.*; /** * 这个类演示了文档注释 * @author Ayan ...

  6. day34-进程

    #进程是程序的运行,程序不运行不产生进程. #1.进程的并行与并发: # 并行:是指两者同时执行,比如赛跑,两人都在不停的往前跑.(资源够用,比如三个线程,四核的cpu) # 并发:是指资源有限的情况 ...

  7. Django连接SQL Server,安装相关扩展包及相关配置

    1.python下载 https://www.python.org/downloads/windows/ 2.根据当前windows和python的版本,下载pymssql相应的exe安装文件. ht ...

  8. Python连接SQLServer2000或连接mysql代码示例

    1.Python连接SQLServer2000 # 获取连接 import pymssql db = pymssql.connect('127.0.0.1', 'sa', 'ddh123', &quo ...

  9. django框架进阶-cookie和session-长期维护

    ###############    python基础回顾:装饰器    ################ # 装饰器非常重要,1是写代码的时候,2是面试的时候,没有python开发不问装饰器的, # ...

  10. java中的锁——列队同步器

    队列同步器 队列同步器(AbstractQueuedSynchronizer)为实现依赖于先进先出 (FIFO) 等待队列的阻塞锁和相关同步器(信号量.事件,等等)提供一个框架.此类的设计目标是成为依 ...