题目

City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, the mayor plans to build a RTQS (Real Time Query System) to monitor all traffic situations. City C is made up of N crossings and M roads, and each road connects two crossings. All roads are bidirectional. One of the important tasks of RTQS is to answer some queries about route-choice problem. Specifically, the task is to find the crossings which a driver MUST pass when he is driving from one given road to another given road.

Input

There are multiple test cases. 
For each test case: 
The first line contains two integers N and M, representing the number of the crossings and roads. 
The next M lines describe the roads. In those M lines, the i th line (i starts from 1)contains two integers X i and Y i, representing that road i connects crossing X i and Y i (X i≠Y i). 
The following line contains a single integer Q, representing the number of RTQs. 
Then Q lines follows, each describing a RTQ by two integers S and T(S≠T) meaning that a driver is now driving on the roads and he wants to reach roadt . It will be always at least one way from roads to roadt.
The input ends with a line of “0 0”. 
Please note that: 0<N<=10000, 0<M<=100000, 0<Q<=10000, 0<X i,Y i<=N, 0<S,T<=M

Output

For each RTQ prints a line containing a single integer representing the number of crossings which the driver MUST pass.

Sample Input

5 6
1 2
1 3
2 3
3 4
4 5
3 5
2
2 3
2 4
0 0

Sample Output

0 1

分析

大概的题目意思就是给个无向图,问从a到b的路径中有几个点必须经过。

思路:根据题意,很容易就可以想到这个题就是求a到b的路径上割点的个数。然后就可以开始缩点了。把边缩成一个点,因为每条边有且仅属于一个联通块中,然后对割点和它相邻的块建边,这样就构造了一棵树。询问a边和b边,只需要找出它们分别属于哪个块中就行,所以问题转化成了一棵树中,有些点标记了是割点,现在询问两个不为割点的点路径上有多少个割点。

这样就很容易做了,以任意一个点为树根,求出每个点到树根路径上有多少个割点,然后对于询问的两个点求一次LCA就可以求出结果了,有点小细节不多说,自己画个图就清楚了。

注意:缩点后树的点数可能是2n个。

代码

  1. #include<cstdio>
  2. #include <vector>
  3. #include <algorithm>
  4. using namespace std;
  5.  
  6. const int maxn = + ;
  7. const int maxm = + ;
  8.  
  9. struct Edge {
  10. int u, to, next, vis, id;
  11. }edge[maxm<<];
  12.  
  13. int head[maxn<<], dfn[maxn<<], low[maxn], st[maxm], iscut[maxn], subnet[maxn], bian[maxm];
  14. int E, time, top, btot;
  15. vector<int> belo[maxn];
  16. void newedge(int u, int to) {
  17. edge[E].u = u;
  18. edge[E].to = to;
  19. edge[E].next = head[u];
  20. edge[E].vis = ;
  21. head[u] = E++;
  22. }
  23.  
  24. void init(int n) {
  25. for(int i = ;i <= n; i++) {
  26. head[i] = -;
  27. dfn[i] = iscut[i] = subnet[i] = ;
  28. belo[i].clear();
  29. }
  30. E = time = top = btot = ;
  31. }
  32.  
  33. void dfs(int u) {
  34. dfn[u] = low[u] = ++time;
  35. for(int i = head[u];i != -;i = edge[i].next) {
  36. if(edge[i].vis) continue;
  37. edge[i].vis = edge[i^].vis = ;
  38. int to = edge[i].to;
  39. st[++top] = i;
  40. if(!dfn[to]) {
  41. dfs(to);
  42. low[u] = min(low[u], low[to]);
  43. if(low[to] >= dfn[u]) {
  44. subnet[u]++;
  45. iscut[u] = ;
  46. btot++;
  47. do {
  48. int now = st[top--];
  49. belo[edge[now].u].push_back(btot);
  50. belo[edge[now].to].push_back(btot);
  51. bian[edge[now].id] = btot;
  52. to = edge[now].u;
  53. }while(to != u);
  54. }
  55. }
  56. else
  57. low[u] = min(low[u], low[to]);
  58. }
  59. }
  60.  
  61. int B[maxn<<], F[maxn<<], d[maxn<<][], pos[maxn<<], tot, dep[maxn<<];
  62. bool treecut[maxn<<];
  63. void RMQ1(int n) {
  64. for(int i = ;i <= n; i++) d[i][] = B[i];
  65. for(int j = ;(<<j) <= n; j++)
  66. for(int i = ;i + j - <= n; i++)
  67. d[i][j] = min(d[i][j-], d[i + (<<(j-))][j-]);
  68. }
  69.  
  70. int RMQ(int L, int R) {
  71. int k = ;
  72. while((<<(k+)) <= R-L+) k++;
  73. return min(d[L][k], d[R-(<<k)+][k] );
  74. }
  75.  
  76. int lca(int a, int b) {
  77. if(pos[a] > pos[b]) swap(a, b);
  78. int ans = RMQ(pos[a], pos[b]);
  79. return F[ans];
  80. }
  81.  
  82. // 搜树来构造RMQ LCA
  83. void DFS(int u) {
  84. dfn[u] = ++time;
  85. B[++tot] = dfn[u];
  86. F[time] = u;
  87. pos[u] = tot;
  88. for(int i = head[u];i != -;i = edge[i].next){
  89. int to = edge[i].to;
  90. if(!dfn[to]) {
  91. if(treecut[u])
  92. dep[to] = dep[u] + ;
  93. else
  94. dep[to] = dep[u];
  95. DFS(to);
  96. B[++tot] = dfn[u];
  97. }
  98. }
  99. }
  100.  
  101. void solve(int n) {
  102. for(int i = ;i <= n; i++) {
  103. dfn[i] = ;
  104. }
  105. time = tot = ;
  106. for(int i = ;i <= n; i++) if(!dfn[i]) {
  107. dep[i] = ;
  108. DFS(i);
  109. }
  110. RMQ1(tot);
  111. int m, u, to;
  112. scanf("%d", &m);
  113. while(m--) {
  114. scanf("%d%d", &u, &to);
  115. u = bian[u]; to = bian[to];
  116. if(u < || to < ) {
  117. printf("0\n"); continue;
  118. }
  119. int LCA = lca(u, to);
  120. if(u == LCA)
  121. printf("%d\n", dep[to] - dep[u] - treecut[u]);
  122. else if(to == LCA)
  123. printf("%d\n", dep[u] - dep[to] - treecut[to]);
  124. else
  125. printf("%d\n", dep[u] + dep[to] - *dep[LCA] - treecut[LCA]);
  126. }
  127. }
  128.  
  129. int main() {
  130. int n, m, u, to;
  131. while(scanf("%d%d", &n, &m) != - && n){
  132. init(n);
  133. for(int i = ;i <= m; i++) {
  134. scanf("%d%d", &u, &to);
  135. edge[E].id = i;
  136. newedge(u, to);
  137. edge[E].id = i;
  138. newedge(to, u);
  139. }
  140.  
  141. for(int i = ;i <= n;i ++) if(!dfn[i]) {
  142. dfs(i);
  143. subnet[i]--;
  144. if(subnet[i] <= ) iscut[i] = ;
  145. }
  146. int ditot = btot;
  147. for(int i = ;i <= btot; i++) treecut[i] = ;
  148. for(int i = ;i <= btot+n; i++) head[i] = -;
  149. E = ;
  150. for(int i = ;i <= n; i++) if(iscut[i]) {
  151. sort(belo[i].begin(), belo[i].end());
  152. ditot++;
  153. treecut[ditot] = ;
  154. newedge(belo[i][], ditot);
  155. newedge(ditot, belo[i][]);
  156. for(int j = ;j < belo[i].size(); j++) if(belo[i][j] != belo[i][j-]) {
  157. newedge(belo[i][j], ditot);
  158. newedge(ditot, belo[i][j]);
  159. }
  160. }
  161. solve(ditot);
  162. }
  163. return ;
  164. }

HDU3686 Traffic Real Time Query【缩点+lca】的更多相关文章

  1. CH#24C 逃不掉的路 和 HDU3686 Traffic Real Time Query System

    逃不掉的路 CH Round #24 - 三体杯 Round #1 题目描述 现代社会,路是必不可少的.任意两个城镇都有路相连,而且往往不止一条.但有些路连年被各种XXOO,走着很不爽.按理说条条大路 ...

  2. HDU3686 Traffic Real Time Query System 题解

    题目 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, t ...

  3. HDU3686 Traffic Real Time Query

    按照vdcc缩点之后一条边只会属于一个新的点集,由于这棵树上满足(不是割点) - (割点) - (不是割点)的连接方法,所以求两条边之间的必经点就是(树上距离 / 2),倍增跳lca即可 考虑到缩点后 ...

  4. HDU3686 Traffic Real Time Query System

    P.S.此题无代码,只有口胡,因为作者码炸了. 题目大意 给你一个有 \(n\) 个点, \(m\) 条边的无向图,进行 \(q\) 次询问,每次询问两个点 \(u\) \(v\),输出两个点的之间的 ...

  5. UVALive-4839 HDU-3686 Traffic Real Time Query System 题解

    题目大意: 有一张无向连通图,问从一条边走到另一条边必定要经过的点有几个. 思路: 先用tarjan将双连通分量都并起来,剩下的再将割点独立出来,建成一棵树,之后记录每个点到根有几个割点,再用RMQ求 ...

  6. 边的双联通+缩点+LCA(HDU3686)

    Traffic Real Time Query System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. HDU 3686 Traffic Real Time Query System (图论)

    HDU 3686 Traffic Real Time Query System 题目大意 给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X边到第Y边必需要经过的点有多少个. solution ...

  8. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  9. Traffic Real Time Query System 圆方树+LCA

    题目描述 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, ...

随机推荐

  1. Java实现第八届蓝桥杯国赛 数字划分

    标题:数字划分 w星球的长老交给小明一个任务: 1,2,3-16 这16个数字分为两组. 要求: 这两组数字的和相同, 并且,两组数字的平方和也相同, 并且,两组数字的立方和也相同. 请你利用计算机的 ...

  2. Java实现 LeetCode 581 最短无序连续子数组(从两遍搜索找两个指针)

    581. 最短无序连续子数组 给定一个整数数组,你需要寻找一个连续的子数组,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序. 你找到的子数组应是最短的,请输出它的长度. 示例 1: 输入: ...

  3. Java实现 蓝桥杯 算法提高 Monday-Saturday质因子

    试题 算法提高 Monday-Saturday质因子 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 这个问题是个简单的与数论有关的题目,看起来似乎是"求正整数的所有质因子 ...

  4. Java实现 基础算法 水仙花数

    public class 水仙花数 { public static void main(String[] args) { for (int i = 100; i < 1000; i++) { i ...

  5. java实现正六面体染色

    ** 正六面体染色** 正六面体用4种颜色染色. 共有多少种不同的染色样式? 要考虑六面体可以任意旋转.翻转. 参考答案: 240 Burnside引理,正方体涂色问题 (n^6 + 3*n^4 + ...

  6. Java实现空瓶换汽水

    1 空瓶换汽水 浪费可耻,节约光荣.饮料店节日搞活动:不用付费,用3个某饮料的空瓶就可以换一瓶该饮料.刚好小明前两天买了2瓶该饮料喝完了,瓶子还在.他耍了个小聪明,向老板借了一个空瓶,凑成3个,换了一 ...

  7. Python 图像处理 OpenCV (7):图像平滑(滤波)处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  8. spring Cloud服务注册中心Eureka集群

    spring Cloud服务注册中心Eureka集群配置: 在application.yml文件加以下配置: server: port: 8761 tomcat: uri-encoding: UTF- ...

  9. JSP基础知识点(转传智)

    一.JSP概述    1.JSP:Java Server Pages(运行在服务器端的页面).就是Servlet.    学习JSP学好的关键:时刻联想到Servlet即可.    2.JSP的原理  ...

  10. Spring AOP—注解配置方法的使用

    Spring除了支持Schema方式配置AOP,还支持注解方式:使用@AspectJ风格的切面声明. 1 启用对@AspectJ的支持 Spring默认不支持@AspectJ风格的切面声明,为了支持需 ...