HDU3686 Traffic Real Time Query【缩点+lca】
题目
City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, the mayor plans to build a RTQS (Real Time Query System) to monitor all traffic situations. City C is made up of N crossings and M roads, and each road connects two crossings. All roads are bidirectional. One of the important tasks of RTQS is to answer some queries about route-choice problem. Specifically, the task is to find the crossings which a driver MUST pass when he is driving from one given road to another given road.
Input
There are multiple test cases.
For each test case:
The first line contains two integers N and M, representing the number of the crossings and roads.
The next M lines describe the roads. In those M lines, the i th line (i starts from 1)contains two integers X i and Y i, representing that road i connects crossing X i and Y i (X i≠Y i).
The following line contains a single integer Q, representing the number of RTQs.
Then Q lines follows, each describing a RTQ by two integers S and T(S≠T) meaning that a driver is now driving on the roads and he wants to reach roadt . It will be always at least one way from roads to roadt.
The input ends with a line of “0 0”.
Please note that: 0<N<=10000, 0<M<=100000, 0<Q<=10000, 0<X i,Y i<=N, 0<S,T<=M
Output
For each RTQ prints a line containing a single integer representing the number of crossings which the driver MUST pass.
Sample Input
5 6
1 2
1 3
2 3
3 4
4 5
3 5
2
2 3
2 4
0 0
Sample Output
0 1
分析
大概的题目意思就是给个无向图,问从a到b的路径中有几个点必须经过。
思路:根据题意,很容易就可以想到这个题就是求a到b的路径上割点的个数。然后就可以开始缩点了。把边缩成一个点,因为每条边有且仅属于一个联通块中,然后对割点和它相邻的块建边,这样就构造了一棵树。询问a边和b边,只需要找出它们分别属于哪个块中就行,所以问题转化成了一棵树中,有些点标记了是割点,现在询问两个不为割点的点路径上有多少个割点。
这样就很容易做了,以任意一个点为树根,求出每个点到树根路径上有多少个割点,然后对于询问的两个点求一次LCA就可以求出结果了,有点小细节不多说,自己画个图就清楚了。
注意:缩点后树的点数可能是2n个。
代码
- #include<cstdio>
- #include <vector>
- #include <algorithm>
- using namespace std;
- const int maxn = + ;
- const int maxm = + ;
- struct Edge {
- int u, to, next, vis, id;
- }edge[maxm<<];
- int head[maxn<<], dfn[maxn<<], low[maxn], st[maxm], iscut[maxn], subnet[maxn], bian[maxm];
- int E, time, top, btot;
- vector<int> belo[maxn];
- void newedge(int u, int to) {
- edge[E].u = u;
- edge[E].to = to;
- edge[E].next = head[u];
- edge[E].vis = ;
- head[u] = E++;
- }
- void init(int n) {
- for(int i = ;i <= n; i++) {
- head[i] = -;
- dfn[i] = iscut[i] = subnet[i] = ;
- belo[i].clear();
- }
- E = time = top = btot = ;
- }
- void dfs(int u) {
- dfn[u] = low[u] = ++time;
- for(int i = head[u];i != -;i = edge[i].next) {
- if(edge[i].vis) continue;
- edge[i].vis = edge[i^].vis = ;
- int to = edge[i].to;
- st[++top] = i;
- if(!dfn[to]) {
- dfs(to);
- low[u] = min(low[u], low[to]);
- if(low[to] >= dfn[u]) {
- subnet[u]++;
- iscut[u] = ;
- btot++;
- do {
- int now = st[top--];
- belo[edge[now].u].push_back(btot);
- belo[edge[now].to].push_back(btot);
- bian[edge[now].id] = btot;
- to = edge[now].u;
- }while(to != u);
- }
- }
- else
- low[u] = min(low[u], low[to]);
- }
- }
- int B[maxn<<], F[maxn<<], d[maxn<<][], pos[maxn<<], tot, dep[maxn<<];
- bool treecut[maxn<<];
- void RMQ1(int n) {
- for(int i = ;i <= n; i++) d[i][] = B[i];
- for(int j = ;(<<j) <= n; j++)
- for(int i = ;i + j - <= n; i++)
- d[i][j] = min(d[i][j-], d[i + (<<(j-))][j-]);
- }
- int RMQ(int L, int R) {
- int k = ;
- while((<<(k+)) <= R-L+) k++;
- return min(d[L][k], d[R-(<<k)+][k] );
- }
- int lca(int a, int b) {
- if(pos[a] > pos[b]) swap(a, b);
- int ans = RMQ(pos[a], pos[b]);
- return F[ans];
- }
- // 搜树来构造RMQ LCA
- void DFS(int u) {
- dfn[u] = ++time;
- B[++tot] = dfn[u];
- F[time] = u;
- pos[u] = tot;
- for(int i = head[u];i != -;i = edge[i].next){
- int to = edge[i].to;
- if(!dfn[to]) {
- if(treecut[u])
- dep[to] = dep[u] + ;
- else
- dep[to] = dep[u];
- DFS(to);
- B[++tot] = dfn[u];
- }
- }
- }
- void solve(int n) {
- for(int i = ;i <= n; i++) {
- dfn[i] = ;
- }
- time = tot = ;
- for(int i = ;i <= n; i++) if(!dfn[i]) {
- dep[i] = ;
- DFS(i);
- }
- RMQ1(tot);
- int m, u, to;
- scanf("%d", &m);
- while(m--) {
- scanf("%d%d", &u, &to);
- u = bian[u]; to = bian[to];
- if(u < || to < ) {
- printf("0\n"); continue;
- }
- int LCA = lca(u, to);
- if(u == LCA)
- printf("%d\n", dep[to] - dep[u] - treecut[u]);
- else if(to == LCA)
- printf("%d\n", dep[u] - dep[to] - treecut[to]);
- else
- printf("%d\n", dep[u] + dep[to] - *dep[LCA] - treecut[LCA]);
- }
- }
- int main() {
- int n, m, u, to;
- while(scanf("%d%d", &n, &m) != - && n){
- init(n);
- for(int i = ;i <= m; i++) {
- scanf("%d%d", &u, &to);
- edge[E].id = i;
- newedge(u, to);
- edge[E].id = i;
- newedge(to, u);
- }
- for(int i = ;i <= n;i ++) if(!dfn[i]) {
- dfs(i);
- subnet[i]--;
- if(subnet[i] <= ) iscut[i] = ;
- }
- int ditot = btot;
- for(int i = ;i <= btot; i++) treecut[i] = ;
- for(int i = ;i <= btot+n; i++) head[i] = -;
- E = ;
- for(int i = ;i <= n; i++) if(iscut[i]) {
- sort(belo[i].begin(), belo[i].end());
- ditot++;
- treecut[ditot] = ;
- newedge(belo[i][], ditot);
- newedge(ditot, belo[i][]);
- for(int j = ;j < belo[i].size(); j++) if(belo[i][j] != belo[i][j-]) {
- newedge(belo[i][j], ditot);
- newedge(ditot, belo[i][j]);
- }
- }
- solve(ditot);
- }
- return ;
- }
HDU3686 Traffic Real Time Query【缩点+lca】的更多相关文章
- CH#24C 逃不掉的路 和 HDU3686 Traffic Real Time Query System
逃不掉的路 CH Round #24 - 三体杯 Round #1 题目描述 现代社会,路是必不可少的.任意两个城镇都有路相连,而且往往不止一条.但有些路连年被各种XXOO,走着很不爽.按理说条条大路 ...
- HDU3686 Traffic Real Time Query System 题解
题目 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, t ...
- HDU3686 Traffic Real Time Query
按照vdcc缩点之后一条边只会属于一个新的点集,由于这棵树上满足(不是割点) - (割点) - (不是割点)的连接方法,所以求两条边之间的必经点就是(树上距离 / 2),倍增跳lca即可 考虑到缩点后 ...
- HDU3686 Traffic Real Time Query System
P.S.此题无代码,只有口胡,因为作者码炸了. 题目大意 给你一个有 \(n\) 个点, \(m\) 条边的无向图,进行 \(q\) 次询问,每次询问两个点 \(u\) \(v\),输出两个点的之间的 ...
- UVALive-4839 HDU-3686 Traffic Real Time Query System 题解
题目大意: 有一张无向连通图,问从一条边走到另一条边必定要经过的点有几个. 思路: 先用tarjan将双连通分量都并起来,剩下的再将割点独立出来,建成一棵树,之后记录每个点到根有几个割点,再用RMQ求 ...
- 边的双联通+缩点+LCA(HDU3686)
Traffic Real Time Query System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- HDU 3686 Traffic Real Time Query System (图论)
HDU 3686 Traffic Real Time Query System 题目大意 给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X边到第Y边必需要经过的点有多少个. solution ...
- HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)
Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...
- Traffic Real Time Query System 圆方树+LCA
题目描述 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, ...
随机推荐
- Java实现第八届蓝桥杯国赛 数字划分
标题:数字划分 w星球的长老交给小明一个任务: 1,2,3-16 这16个数字分为两组. 要求: 这两组数字的和相同, 并且,两组数字的平方和也相同, 并且,两组数字的立方和也相同. 请你利用计算机的 ...
- Java实现 LeetCode 581 最短无序连续子数组(从两遍搜索找两个指针)
581. 最短无序连续子数组 给定一个整数数组,你需要寻找一个连续的子数组,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序. 你找到的子数组应是最短的,请输出它的长度. 示例 1: 输入: ...
- Java实现 蓝桥杯 算法提高 Monday-Saturday质因子
试题 算法提高 Monday-Saturday质因子 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 这个问题是个简单的与数论有关的题目,看起来似乎是"求正整数的所有质因子 ...
- Java实现 基础算法 水仙花数
public class 水仙花数 { public static void main(String[] args) { for (int i = 100; i < 1000; i++) { i ...
- java实现正六面体染色
** 正六面体染色** 正六面体用4种颜色染色. 共有多少种不同的染色样式? 要考虑六面体可以任意旋转.翻转. 参考答案: 240 Burnside引理,正方体涂色问题 (n^6 + 3*n^4 + ...
- Java实现空瓶换汽水
1 空瓶换汽水 浪费可耻,节约光荣.饮料店节日搞活动:不用付费,用3个某饮料的空瓶就可以换一瓶该饮料.刚好小明前两天买了2瓶该饮料喝完了,瓶子还在.他耍了个小聪明,向老板借了一个空瓶,凑成3个,换了一 ...
- Python 图像处理 OpenCV (7):图像平滑(滤波)处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- spring Cloud服务注册中心Eureka集群
spring Cloud服务注册中心Eureka集群配置: 在application.yml文件加以下配置: server: port: 8761 tomcat: uri-encoding: UTF- ...
- JSP基础知识点(转传智)
一.JSP概述 1.JSP:Java Server Pages(运行在服务器端的页面).就是Servlet. 学习JSP学好的关键:时刻联想到Servlet即可. 2.JSP的原理 ...
- Spring AOP—注解配置方法的使用
Spring除了支持Schema方式配置AOP,还支持注解方式:使用@AspectJ风格的切面声明. 1 启用对@AspectJ的支持 Spring默认不支持@AspectJ风格的切面声明,为了支持需 ...