让我们用一个例子来看看try的机制:

try:
print('try...')
r = 10 / 0
print('result:', r)
except ZeroDivisionError as e:
print('except:', e)
finally:
print('finally...')
print('END')

当我们认为某些代码可能会出错时,就可以用try来运行这段代码,如果执行出错,则后续代码不会继续执行,而是直接跳转至错误处理代码,即except语句块,执行完except后,如果有finally语句块,则执行finally语句块,至此,执行完毕。except其实就是一个错误捕捉,可以跨越很多层的函数,不断上抛错误信息。无论前面是否错误,finally都是一定会执行的。

Python内置的logging模块可以非常容易地记录错误信息:

# err_logging.py

import logging

def foo(s):
return 10 / int(s) def bar(s):
return foo(s) * 2 def main():
try:
bar('0')
except Exception as e:
logging.exception(e) main()
print('END')

同样是出错,但程序打印完错误信息后会继续执行,并正常退出:

$ python3 err_logging.py
ERROR:root:division by zero
Traceback (most recent call last):
File "err_logging.py", line 13, in main
bar('0')
File "err_logging.py", line 9, in bar
return foo(s) * 2
File "err_logging.py", line 6, in foo
return 10 / int(s)
ZeroDivisionError: division by zero
END

通过配置,logging还可以把错误记录到日志文件里,方便事后排查。

错误处理

阅读: 177265

在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错,以及出错的原因。在操作系统提供的调用中,返回错误码非常常见。比如打开文件的函数open(),成功时返回文件描述符(就是一个整数),出错时返回-1

用错误码来表示是否出错十分不便,因为函数本身应该返回的正常结果和错误码混在一起,造成调用者必须用大量的代码来判断是否出错:

def foo():
r = some_function()
if r==(-1):
return (-1)
# do something
return r def bar():
r = foo()
if r==(-1):
print('Error')
else:
pass

一旦出错,还要一级一级上报,直到某个函数可以处理该错误(比如,给用户输出一个错误信息)。

所以高级语言通常都内置了一套try...except...finally...的错误处理机制,Python也不例外。

try

让我们用一个例子来看看try的机制:

try:
print('try...')
r = 10 / 0
print('result:', r)
except ZeroDivisionError as e:
print('except:', e)
finally:
print('finally...')
print('END')

当我们认为某些代码可能会出错时,就可以用try来运行这段代码,如果执行出错,则后续代码不会继续执行,而是直接跳转至错误处理代码,即except语句块,执行完except后,如果有finally语句块,则执行finally语句块,至此,执行完毕。

上面的代码在计算10 / 0时会产生一个除法运算错误:

try...
except: division by zero
finally...
END

从输出可以看到,当错误发生时,后续语句print('result:', r)不会被执行,except由于捕获到ZeroDivisionError,因此被执行。最后,finally语句被执行。然后,程序继续按照流程往下走。

如果把除数0改成2,则执行结果如下:

try...
result: 5
finally...
END

由于没有错误发生,所以except语句块不会被执行,但是finally如果有,则一定会被执行(可以没有finally语句)。

你还可以猜测,错误应该有很多种类,如果发生了不同类型的错误,应该由不同的except语句块处理。没错,可以有多个except来捕获不同类型的错误:

try:
print('try...')
r = 10 / int('a')
print('result:', r)
except ValueError as e:
print('ValueError:', e)
except ZeroDivisionError as e:
print('ZeroDivisionError:', e)
finally:
print('finally...')
print('END')

int()函数可能会抛出ValueError,所以我们用一个except捕获ValueError,用另一个except捕获ZeroDivisionError

此外,如果没有错误发生,可以在except语句块后面加一个else,当没有错误发生时,会自动执行else语句:

try:
print('try...')
r = 10 / int('2')
print('result:', r)
except ValueError as e:
print('ValueError:', e)
except ZeroDivisionError as e:
print('ZeroDivisionError:', e)
else:
print('no error!')
finally:
print('finally...')
print('END')

Python的错误其实也是class,所有的错误类型都继承自BaseException,所以在使用except时需要注意的是,它不但捕获该类型的错误,还把其子类也“一网打尽”。比如:

try:
foo()
except ValueError as e:
print('ValueError')
except UnicodeError as e:
print('UnicodeError')

第二个except永远也捕获不到UnicodeError,因为UnicodeErrorValueError的子类,如果有,也被第一个except给捕获了。

Python所有的错误都是从BaseException类派生的,常见的错误类型和继承关系看这里:

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

使用try...except捕获错误还有一个巨大的好处,就是可以跨越多层调用,比如函数main()调用foo()foo()调用bar(),结果bar()出错了,这时,只要main()捕获到了,就可以处理:

def foo(s):
return 10 / int(s) def bar(s):
return foo(s) * 2 def main():
try:
bar('0')
except Exception as e:
print('Error:', e)
finally:
print('finally...')

也就是说,不需要在每个可能出错的地方去捕获错误,只要在合适的层次去捕获错误就可以了。这样一来,就大大减少了写try...except...finally的麻烦。

调用栈

如果错误没有被捕获,它就会一直往上抛,最后被Python解释器捕获,打印一个错误信息,然后程序退出。来看看err.py

# err.py:
def foo(s):
return 10 / int(s) def bar(s):
return foo(s) * 2 def main():
bar('0') main()

执行,结果如下:

$ python3 err.py
Traceback (most recent call last):
File "err.py", line 11, in <module>
main()
File "err.py", line 9, in main
bar('0')
File "err.py", line 6, in bar
return foo(s) * 2
File "err.py", line 3, in foo
return 10 / int(s)
ZeroDivisionError: division by zero

出错并不可怕,可怕的是不知道哪里出错了。解读错误信息是定位错误的关键。我们从上往下可以看到整个错误的调用函数链:

错误信息第1行:

Traceback (most recent call last):

告诉我们这是错误的跟踪信息。

第2~3行:

  File "err.py", line 11, in <module>
main()

调用main()出错了,在代码文件err.py的第11行代码,但原因是第9行:

  File "err.py", line 9, in main
bar('0')

调用bar('0')出错了,在代码文件err.py的第9行代码,但原因是第6行:

  File "err.py", line 6, in bar
return foo(s) * 2

原因是return foo(s) * 2这个语句出错了,但这还不是最终原因,继续往下看:

  File "err.py", line 3, in foo
return 10 / int(s)

原因是return 10 / int(s)这个语句出错了,这是错误产生的源头,因为下面打印了:

ZeroDivisionError: integer division or modulo by zero

根据错误类型ZeroDivisionError,我们判断,int(s)本身并没有出错,但是int(s)返回0,在计算10 / 0时出错,至此,找到错误源头。

 出错的时候,一定要分析错误的调用栈信息,才能定位错误的位置。

记录错误

如果不捕获错误,自然可以让Python解释器来打印出错误堆栈,但程序也被结束了。既然我们能捕获错误,就可以把错误堆栈打印出来,然后分析错误原因,同时,让程序继续执行下去。

Python内置的logging模块可以非常容易地记录错误信息:

# err_logging.py

import logging

def foo(s):
return 10 / int(s) def bar(s):
return foo(s) * 2 def main():
try:
bar('0')
except Exception as e:
logging.exception(e) main()
print('END')

同样是出错,但程序打印完错误信息后会继续执行,并正常退出:

$ python3 err_logging.py
ERROR:root:division by zero
Traceback (most recent call last):
File "err_logging.py", line 13, in main
bar('0')
File "err_logging.py", line 9, in bar
return foo(s) * 2
File "err_logging.py", line 6, in foo
return 10 / int(s)
ZeroDivisionError: division by zero
END

通过配置,logging还可以把错误记录到日志文件里,方便事后排查。

抛出错误

因为错误是class,捕获一个错误就是捕获到该class的一个实例。因此,错误并不是凭空产生的,而是有意创建并抛出的。Python的内置函数会抛出很多类型的错误,我们自己编写的函数也可以抛出错误。

如果要抛出错误,首先根据需要,可以定义一个错误的class,选择好继承关系,然后,用raise语句抛出一个错误的实例:

# err_raise.py
class FooError(ValueError):
pass def foo(s):
n = int(s)
if n==0:
raise FooError('invalid value: %s' % s)
return 10 / n foo('0')

执行,可以最后跟踪到我们自己定义的错误:

$ python3 err_raise.py
Traceback (most recent call last):
File "err_throw.py", line 11, in <module>
foo('0')
File "err_throw.py", line 8, in foo
raise FooError('invalid value: %s' % s)
__main__.FooError: invalid value: 0

只有在必要的时候才定义我们自己的错误类型。如果可以选择Python已有的内置的错误类型(比如ValueErrorTypeError),尽量使用Python内置的错误类型。

写程序最痛苦的事情莫过于调试,程序往往会以你意想不到的流程来运行,你期待执行的语句其实根本没有执行,这时候,就需要调试了。

包括

pdb.set_trace()/断言(assert)

虽然用IDE调试起来比较方便,但是最后你会发现,logging才是终极武器。

关于测试的内容我不想记太多uo,我更关注怎么写好高效漂亮的代码

Python实用笔记——错误处理的更多相关文章

  1. Python实用笔记 (23)面向对象高级编程——使用__slots__

    正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性.先定义class: class Student(object): pa ...

  2. Python实用笔记 (21)面向对象编程——获取对象信息

    当我们拿到一个对象的引用时,如何知道这个对象是什么类型.有哪些方法呢? 使用type() 首先,我们来判断对象类型,使用type()函数: 基本类型都可以用type()判断: >>> ...

  3. Python实用笔记 (6)函数

    绝对值 >>> abs(100) 100 >>> abs(-20) 20 max()可以接收任意多个参数,并返回最大的那个: >>> max(1, ...

  4. Python实用笔记 (5)使用dictionary和set

    dictionary 通过键值存储,具有极快的查找速度,但占用空间比list大很多 举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list: names = ['Micha ...

  5. Python实用笔记 (11)高级特性——迭代器

    这些可以直接作用于for循环的对象统称为可迭代对象:Iterable. 可以使用isinstance()判断一个对象是否是Iterable对象: >>> from collectio ...

  6. Python实用笔记 (10)高级特性——生成器

    通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素 ...

  7. python实用笔记——IO编程

    打开文件 f = open('/Users/michael/test.txt', 'r') 再读取 >>> f.read() 'Hello, world!' 最后关闭 >> ...

  8. Python实用笔记 (27)面向对象高级编程——使用枚举类

    枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例.Python提供了Enum类来实现这个功能: from enum import Enum Month = Enum('Mon ...

  9. Python实用笔记 (26)面向对象高级编程——定制类

    Python的class允许定义许多定制方法,可以让我们非常方便地生成特定的类.以下是集中常见的定制方法: 怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了: _ ...

随机推荐

  1. go语言的主要特征

    go语言主要特征 1.自动立即回收. 2.更丰富的内置类型. 3.函数多返回值. 4.错误处理. 5.匿名函数和闭包. 6.类型和接口. 7.并发编程. 8.反射. 9.语言交互性. golang文件 ...

  2. ActiveMQ 笔记(四)Spring\SpringBoot 整合 Activemq

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一.Spring 整合Activemq 1.所需jar包 <dependencies> &l ...

  3. Java实现 蓝桥杯 算法提高 天天向上(DP)

    试题 算法提高 天天向上 问题描述 A同学的学习成绩十分不稳定,于是老师对他说:"只要你连续4天成绩有进步,那我就奖励给你一朵小红花."可是这对于A同学太困难了.于是,老师对他放宽 ...

  4. Java实现 LeetCode 647 回文子串(暴力)

    647. 回文子串 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被计为是不同的子串. 示例 1: 输入: "a ...

  5. Java实现 LeetCode 589 N叉树的前序遍历(遍历树)

    589. N叉树的前序遍历 给定一个 N 叉树,返回其节点值的前序遍历. 例如,给定一个 3叉树 : 返回其前序遍历: [1,3,5,6,2,4]. 说明: 递归法很简单,你可以使用迭代法完成此题吗? ...

  6. Java实现 蓝桥杯VIP 基础练习 字符串对比

    问题描述 给定两个仅由大写字母或小写字母组成的字符串(长度介于1到10之间),它们之间的关系是以下4中情况之一: 1:两个字符串长度不等.比如 Beijing 和 Hebei 2:两个字符串不仅长度相 ...

  7. Java实现One-way traffic(单向交通)

    One-way traffic In a certain town there are n intersections connected by two- and one-way streets. T ...

  8. linux下git相关命令

    请参照以下文章:https://www.cnblogs.com/pengtangtang/articles/PengTangTang_git_one.html

  9. 【Spring注解驱动开发】组件注册-@ComponentScan-自动扫描组件&指定扫描规则

    写在前面 在实际项目中,我们更多的是使用Spring的包扫描功能对项目中的包进行扫描,凡是在指定的包或子包中的类上标注了@Repository.@Service.@Controller.@Compon ...

  10. mysql基础-数据库表的管理-记录(四)

    0x01 MySQL中字符大小写 1.SQL关键字及函数不区分大小写 2.数据库.表及视图名称的大小写区分与否取决于底层OS及FS 3.存储过程.存储函数及事件调度器的名字不区分大小写,但触发器区分大 ...