题解 hdu4624 Endless Spin
题目大意:
有长度为\(n\)的区间,每次随机选择一段(左右端点都是整数)染黑,问期望多少次全部染黑。
\(n\leq 50\)
设\(n\)个随机变量\(t_1,...,t_n\)。\(t_i\)表示第一次覆盖到\(i\)的时间的期望。则我们要求的是\(\displaystyle\max_{i=1}^{n}(E(t_i))\)。
考虑minmax容斥:
\]
这样我们就转化为对于每点集\(s\),求它第一次被覆盖到的期望操作次数(覆盖到其中任何一个点都算覆盖)。
如果我们知道了只操作一次的情况下它被覆盖概率\(p\),则期望操作次数就是\(\frac{1}{p}\)。(例如掷一次骰子掷到\(3\)的概率是\(\frac{1}{6}\),则期望掷\(6\)次可以第一次得到\(3\))。
这个还是不好求,我们转而求操作一次,\(s\)中的点一个都覆盖不到的概率\(p'\),则\(p=1-p',E(s)=\frac{1}{1-p'}\)。
考虑如果暴力枚举一个子集\(s\)。则整个数列被\(s\)内的点划分成若干个区间,设长度分别为:\(l_1,l_2,...,l_k\)。则\(p'=\frac{\sum_{i=1}^{k}\frac{1}{2}l_i(l_i+1)}{\frac{1}{2}n(n+1)}\)。复杂度\(O(2^nn)\),无法承受。
考虑DP。设\(dp(i,j,k,0/1)\)表示考虑了前\(i\)个位置,最多能取\(j\)个区间\((j\leq \frac{1}{2}n(n+1))\),使得没有区间覆盖到点集内的点。上一次选的点集里的点距离\(i\)为\(k\),点集的大小奇偶性为\(0/1\)。这样选出区间的方案数。
转移时考虑第\(i+1\)个位置是否加入点集:
如果加入点集:\(f(i+1,j,0,1/0)+=f(i,j,k,0/1)\).
如果不加入点集:\(f(i+1,j+k+1,k+1,0/1)+=f(i,j,k,0/1)\).
转移是\(O(1)\)的,所以DP的复杂度\(O(n^4)\)。
统计答案时把所有\(j\)的情况加起来即可。即:\(ans(n)=\displaystyle\sum_{j=0}^{\frac{1}{2}n(n+1)-1}\frac{f(n,j,k,0/1)\times(-1)^{1/0}}{1-\frac{j}{\frac{1}{2}n(n+1)}}\).
备注:具体实现的时候把分数上下同时乘以\(\frac{1}{2}n(n+1)\)会更好写。式子上面的\(k\)表示所有\(k\)的情况的和。\((-1)\)的指数上的\(0/1\)之所以和状态里的\(0/1\)相反是因为minmax容斥的式子本来就是\((-1)^{|t|+1}\)。
注意本题要使用高精度。
参考代码:
//problem:hdu4624
#include <bits/stdc++.h>
using namespace std;
#define pb push_back
#define mk make_pair
#define lob lower_bound
#define upb upper_bound
#define fst first
#define scd second
typedef unsigned int uint;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
namespace Fread{
const int MAXN=1<<20;
char buf[MAXN],*S,*T;
inline char getchar(){
if(S==T){
T=(S=buf)+fread(buf,1,MAXN,stdin);
if(S==T)return EOF;
}
return *S++;
}
}//namespace Fread
#ifdef ONLINE_JUDGE
#define getchar Fread::getchar
#endif
inline int read(){
int f=1,x=0;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline ll readll(){
ll f=1,x=0;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
/* ------ by:duyi ------ */ // dysyn1314
namespace Bigdouble{
const int K=50;
typedef long long ll;
struct db{ll zs,xs[K+5];db(){zs=0;memset(xs,0,sizeof(xs));}};
db makedb(ll fz,ll fm){
db res;
res.zs=fz/fm,fz%=fm,fz*=10;
for(int i=1;i<=K;++i)res.xs[i]=fz/fm,fz%=fm,fz*=10;
return res;
}
db operator + (db a,db b){
db res;ll jw=0;
for(int i=K;i>=1;--i)res.xs[i]=a.xs[i]+b.xs[i]+jw,jw=res.xs[i]/10,res.xs[i]%=10;
res.zs=a.zs+b.zs+jw;
return res;
}
db operator - (db a,db b){
db res;
for(int i=K;i>=2;--i){
if(a.xs[i]<b.xs[i])a.xs[i-1]--,a.xs[i]+=10;
res.xs[i]=a.xs[i]-b.xs[i];
}
if(a.xs[1]<b.xs[1])a.zs--,a.xs[1]+=10;
res.xs[1]=a.xs[1]-b.xs[1];
res.zs=a.zs-b.zs;
return res;
}
db operator * (db a,ll b){
db res;
ll jw=0;
for(int i=K;i>=1;--i)res.xs[i]=a.xs[i]*b+jw,jw=res.xs[i]/10,res.xs[i]%=10;
res.zs=a.zs*b+jw;
return res;
}
void printdb(db a,int k=15){
if(a.xs[k+1]>=5)a.xs[k]++;
int t=k;
while(a.xs[t]>=10){
a.xs[t]-=10;
if(t!=1)a.xs[--t]++;
else{a.zs++;break;}
}
cout<<a.zs<<".";
for(int i=1;i<=k;++i)cout<<a.xs[i];
}
}
using namespace Bigdouble;
const int MAXN=55;
ll dp[MAXN][MAXN*MAXN][MAXN][2];
db ans[MAXN];
int main() {
dp[0][0][0][0]=1;
for(int i=0;i<50;++i){
for(int j=0;j<=i*(i+1)/2;++j){
for(int k=0;k<=i;++k){
for(int t=0;t<=1;++t){
dp[i+1][j][0][t^1]+=dp[i][j][k][t];
dp[i+1][j+k+1][k+1][t]+=dp[i][j][k][t];
}
}
}
}
for(int n=1;n<=50;++n){
for(int j=0;j<n*(n+1)/2;++j){
db tmp=makedb(n*(n+1)/2,n*(n+1)/2-j);
ll sum=0;
for(int k=0;k<=n;++k)sum+=dp[n][j][k][0];
ans[n]=ans[n]-(tmp*sum);
sum=0;
for(int k=0;k<=n;++k)sum+=dp[n][j][k][1];
ans[n]=ans[n]+(tmp*sum);
}
}
//for(int n=1;n<=50;++n)printf("%d\n",n),printdb(ans[n]),puts("");return 0;
int t=read();while(t--){
int n=read();
printdb(ans[n]);puts("");
}
return 0;
}
题解 hdu4624 Endless Spin的更多相关文章
- HDU4624 Endless Spin 和 HAOI2015 按位或
Endless Spin 给你一段长度为[1..n]的白色区间,每次随机的取一个子区间将这个区间涂黑,问整个区间被涂黑时需要的期望次数. n<=50 题解 显然是min-max容斥,但是n的范围 ...
- HDU4624 Endless Spin 【最大最小反演】【期望DP】
题目分析: 题目是求$E(MAX_{i=1}^n(ai))$, 它等于$E(\sum_{s \subset S}{(-1)^{|s|-1}*min(s))} = \sum_{s \subset S}{ ...
- HDU4624 Endless Spin(概率&&dp)
2013年多校的题目,那个时候不太懂怎么做,最近重新拾起来,看了一下出题人当初的解题报告,再结合一下各种情况的理解,终于知道整个大致的做法,这里具体写一下做法. 题意:给你一段长度为[1..n]的白色 ...
- Endless Spin
clj的题.图是假的别看 得先做这个[HAOI2015]按位或 本题如果还用[HAOI2015]按位或 的方法,2^50拜拜 但是思路一定是这样的:min-max容斥,考虑每个S的第一触及次数期望 这 ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- ZROI 暑期高端峰会 A班 Day1 组合计数
AGC036F Square Constriants 一定有 \(l_i<p_i\le r_i\). 考虑朴素容斥,枚举每个数是 \(\le l_i\) 还是 \(\le r_i\).对于 \( ...
- 2019暑期金华集训 Day1 组合计数
自闭集训 Day1 组合计数 T1 \(n\le 10\):直接暴力枚举. \(n\le 32\):meet in the middle,如果左边选了\(x\),右边选了\(y\)(且\(x+y\le ...
- csp-s模拟47 Emotional Flutter,Endless Fantasy题解
题面:https://www.cnblogs.com/Juve/articles/11558523.html A:Emotional Flutter 如果起点确定,那么我们后面走的点都是固定的,及mo ...
- ZJOI2012网络 题解报告【LCT】
题目描述 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相同颜色的边不超过两条. 图中不存在同色的环,同色的环指相同颜色的边构成的环. 在这 ...
随机推荐
- iOS 使用 Xcode8 制作动态库及静态库
在使用第三方 SDK 时,经常遇到他们提供的仅仅只有一个动态或静态库,并不能获取源码.使用动态库 FrameWork 或 静态库 Lib,可以满足不想把核心代码的具体实现向使用者展示,又能避免其他人错 ...
- 洛谷 T8088 RQY的舞会
嗯... 题目链接:https://www.luogu.org/problem/T8088 这道题很好想,我想的是维护两个小根堆(当然可以用数组模拟) 然后从堆顶开始,如果两个元素的差小于1,则cnt ...
- JavaScript的发展史
一.JavaScript发展历程 1. 诞生 JavaScript因互联网而生,紧跟浏览器的发展而发展. 1990年,欧洲核能研究所(CERN)科学家在互联网(Internet)基础上,发明了 ...
- SpringBoot中普通类无法通过@Autowired自动注入Service、dao等bean解决方法
无法注入原因: 有的时候我们有一些类并不想注入Spring容器中,有Spring容器实例化,但是我们又想使用Spring容器中的一些对象,所以就只能借助工具类来获取了 工具类: package com ...
- day5-2正则表达式
正则表达式: 正则表达式对象的创建 1,构造函数 var pattern =new RegExp("正则表达式","修饰符") var pattern =new ...
- 从零构建以太坊(Ethereum)智能合约到项目实战——第20章 搭建自己的私有链网络
P75 .1-以太坊私网建立 .合约编译.部署完全教程(1) 使用此博文进行安装配置:https://blog.csdn.net/w88193363/article/details/79402074 ...
- Laravel 6.X + Vue.js 2.X + Element UI +vue-router 配置
Laravel 版本:6.X Vue 版本:2.X Laravel配置: Laravel使用的是Laragon安装 选择Laravel:接下来弹出框,输入项目名,laravel会自动创建一个数据库,数 ...
- Go语言的map
map一般是以库的方式提供,在C++和C#和JAVA中都需要引用相应的库而Go语言不需要引入库,可以直接方便使用 定义:map是一堆键值对的未排序集合.无序 1.声明变量: map的声明基本上没有多余 ...
- eclispe+maven+ssm+sql_server/mysql配置
链接: https://pan.baidu.com/s/1_BFI8XfS8l89-3-1IjlVZg 密码: x9in
- postman提交文件
说明 1.Headers中添加 Content-Type multipart/form-data 2.Body 中选择form-data 并添加 需要传的参数名和值 最后新的一行选择file ...