[CF百场计划]#2 Codeforces Round #618 (Div. 2)
A. Non-zero
Description:
Guy-Manuel and Thomas have an array \(a\) of \(n\) integers [\(a_1, a_2, \dots, a_n\)]. In one step they can add \(1\) to any element of the array. Formally, in one step they can choose any integer index \(i\) (\(1 \le i \le n\)) and do \(a_i := a_i + 1\).
If either the sum or the product of all elements in the array is equal to zero, Guy-Manuel and Thomas do not mind to do this operation one more time.
What is the minimum number of steps they need to do to make both the sum and the product of all elements in the array different from zero? Formally, find the minimum number of steps to make \(a_1 + a_2 +\) \(\dots\) \(+ a_n \ne 0\) and \(a_1 \cdot a_2 \cdot\) \(\dots\) \(\cdot a_n \ne 0\).
Input:
Each test contains multiple test cases.
The first line contains the number of test cases \(t\) (\(1 \le t \le 10^3\)). The description of the test cases follows.
The first line of each test case contains an integer \(n\) (\(1 \le n \le 100\)) — the size of the array.
The second line of each test case contains \(n\) integers \(a_1, a_2, \dots, a_n\) (\(-100 \le a_i \le 100\)) — elements of the array .
Output
For each test case, output the minimum number of steps required to make both sum and product of all elements in the array different from zero.
Sample Input:
4
3
2 -1 -1
4
-1 0 0 1
2
-1 2
3
0 -2 1
Sample Output:
1
2
0
2
思路:
遇0加1,和为零再加1.
AC代码:
#include<bits/stdc++.h>
const int mod = 1e9 + 7;
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
int s[150];
int main() {
int _,n;
scanf("%d",&_);
while(_--){
scanf("%d",&n);
int sum=0;
for(int i=1;i<=n;++i){
scanf("%d",&s[i]);
sum+=s[i];
}
int ans=0;
for(int i=1;i<=n;++i){
if(s[i]==0) ans++,sum++;
}
if(sum==0){
ans++;
}
printf("%d\n",ans);
}
return 0;
}
B. Assigning to Classes
Description:
Reminder: the median of the array \([a_1, a_2, \dots, a_{2k+1}]\) of odd number of elements is defined as follows: let \([b_1, b_2, \dots, b_{2k+1}]\) be the elements of the array in the sorted order. Then median of this array is equal to \(b_{k+1}\).
There are \(2n\) students, the \(i\)-th student has skill level \(a_i\). It's not guaranteed that all skill levels are distinct.
Let's define skill level of a class as the median of skill levels of students of the class.
As a principal of the school, you would like to assign each student to one of the \(2\) classes such that each class has odd number of students (not divisible by \(2\)). The number of students in the classes may be equal or different, by your choice. Every student has to be assigned to exactly one class. Among such partitions, you want to choose one in which the absolute difference between skill levels of the classes is minimized.
What is the minimum possible absolute difference you can achieve?
Input:
Each test contains multiple test cases. The first line contains the number of test cases \(t\) (\(1 \le t \le 10^4\)). The description of the test cases follows.
The first line of each test case contains a single integer \(n\) (\(1 \le n \le 10^5\)) — the number of students halved.
The second line of each test case contains \(2n\) integers \(a_1, a_2, \dots, a_{2 n}\) (\(1 \le a_i \le 10^9\)) — skill levels of students.
It is guaranteed that the sum of \(n\) over all test cases does not exceed \(10^5\).
Output
For each test case, output a single integer, the minimum possible absolute difference between skill levels of two classes of odd sizes.
Sample Input:
3
1
1 1
3
6 5 4 1 2 3
5
13 4 20 13 2 5 8 3 17 16
Sample Output:
0
1
5
思路:
中间两个数之差
AC代码:
#include<bits/stdc++.h>
const int mod = 1e9 + 7;
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 2e5+7;
int s[maxn];
int main() {
int _,n;
scanf("%d",&_);
while(_--) {
scanf("%d", &n);
n*=2;
for (int i = 1; i <= n; ++i) {
scanf("%d", &s[i]);
}
sort(s+1,s+1+n);
printf("%d\n",s[n/2+1]-s[n/2]);
}
return 0;
}
C. Anu Has a Function
Description:
Anu has created her own function \(f\): \(f(x, y) = (x | y) - y\) where \(|\) denotes the bitwise OR operation. For example, \(f(11, 6) = (11|6) - 6 = 15 - 6 = 9\). It can be proved that for any nonnegative numbers \(x\) and \(y\) value of \(f(x, y)\) is also nonnegative.
She would like to research more about this function and has created multiple problems for herself. But she isn't able to solve all of them and needs your help. Here is one of these problems.
A value of an array \([a_1, a_2, \dots, a_n]\) is defined as \(f(f(\dots f(f(a_1, a_2), a_3), \dots a_{n-1}), a_n)\) (see notes). You are given an array with not necessarily distinct elements. How should you reorder its elements so that the value of the array is maximal possible?
Input:
The first line contains a single integer \(n\) (\(1 \le n \le 10^5\)).
The second line contains \(n\) integers \(a_1, a_2, \ldots, a_n\) (\(0 \le a_i \le 10^9\)). Elements of the array are not guaranteed to be different.
Output
Output \(n\) integers, the reordering of the array with maximum value. If there are multiple answers, print any.
Sample Input:
4
4 0 11 6
Sample Output:
11 6 4 0
Sample Input:
1
13
Sample Output:
13
思路:
打一下表,发现只与第一个数有关
观察后发现,一个序列的价值等于:
设\(s[1]=a\),其他所有数的或运算为\(b\)
\(a-(a\)&\(b)\) 所以找独一无二的最大的二进制位,因为如果这个二进制位有多个,那就没有价值.
AC代码:
#include<bits/stdc++.h>
const int mod = 1e9 + 7;
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 2e5+7;
int s[maxn],n;
#define f(x,y) (x|y)-y
int check(){
int ans=f(s[1],s[2]);
for(int i=3;i<=n;++i){
ans=f(ans,s[3]);
}
return ans;
}
int main() {
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d",&s[i]);
}
int a=-1;
for(int j=30,cnt,b=-1;j>=0;--j){
cnt=0;
for(int i=1;i<=n;++i){
if(s[i] >> j & 1){
cnt++;
b=i;
}
}
if(cnt==1){
a=b;
break;
}
}
if(a!=-1)printf("%d",s[a]);
for(int i=1;i<=n;++i) if(i!=a) printf(" %d",s[i]);
return 0;
}
D. Aerodynamic
Description:
Guy-Manuel and Thomas are going to build a polygon spaceship.
You're given a strictly convex (i. e. no three points are collinear) polygon \(P\) which is defined by coordinates of its vertices. Define \(P(x,y)\) as a polygon obtained by translating \(P\) by vector \(\overrightarrow {(x,y)}\). The picture below depicts an example of the translation:
Define \(T\) as a set of points which is the union of all \(P(x,y)\) such that the origin \((0,0)\) lies in \(P(x,y)\) (both strictly inside and on the boundary). There is also an equivalent definition: a point \((x,y)\) lies in \(T\) only if there are two points \(A,B\) in \(P\) such that \(\overrightarrow {AB} = \overrightarrow {(x,y)}\). One can prove \(T\) is a polygon too. For example, if \(P\) is a regular triangle then \(T\) is a regular hexagon. At the picture below \(P\) is drawn in black and some \(P(x,y)\) which contain the origin are drawn in colored:
The spaceship has the best aerodynamic performance if \(P\) and \(T\) are similar. Your task is to check whether the polygons \(P\) and \(T\) are similar.
Input:
The first line of input will contain a single integer \(n\) (\(3 \le n \le 10^5\)) — the number of points.
The \(i\)-th of the next \(n\) lines contains two integers \(x_i, y_i\) (\(|x_i|, |y_i| \le 10^9\)), denoting the coordinates of the \(i\)-th vertex.
It is guaranteed that these points are listed in counterclockwise order and these points form a strictly convex polygon.
Output
Output "YES" in a separate line, if \(P\) and \(T\) are similar. Otherwise, output "NO" in a separate line. You can print each letter in any case (upper or lower).
Sample Input:
4
1 0
4 1
3 4
0 3
Sample Output:
YES
Sample Input:
3
100 86
50 0
150 0
Sample Output:
nO
Sample Input:
8
0 0
1 0
2 1
3 3
4 6
3 6
2 5
1 3
Sample Output:
YES
思路:
首先这个题意太劝退了.
这个题就是说一个图形P不断移动,但是\((0,0)\)点必须在图形内部或边界上,最后形成的轨迹图形T.
画一下然后感受一下就是中心对称图形(其实可以猜),\(n\)为偶数时才可能是中心对称图形.
简单证明一下就是对于P上点\((x,y)\),以一个端点\((x_0,y_0)\),T上一定有\((x-x_0,y-y_0)\),也一定有\((x_0-x,y_0-y)\).如果P上没有中心对称相对应的点,那肯定形状不相似....说不清楚,还是感受一下吧.
判断中心对称图形就是相对的点连线看看是否相交于一点.
AC代码:
#include<bits/stdc++.h>
const int mod = 1e9 + 7;
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 2e5+7;
int a[maxn],b[maxn];
int main() {
int n;
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i]>>b[i];
if(n%2==1){
cout<<"NO";
return 0;
}
for(int i=2;i<=n/2;i++){
if(a[i]+a[n/2+i]!=a[1]+a[n/2+1]||b[i]+b[n/2+i]!=b[1]+b[n/2+1]){
cout<<"NO";
return 0;
}
}
cout<<"YES";
return 0;
}
E. Water Balance
Description:
There are \(n\) water tanks in a row, \(i\)-th of them contains \(a_i\) liters of water. The tanks are numbered from \(1\) to \(n\) from left to right.
You can perform the following operation: choose some subsegment \([l, r]\) (\(1\le l \le r \le n\)), and redistribute water in tanks \(l, l+1, \dots, r\) evenly. In other words, replace each of \(a_l, a_{l+1}, \dots, a_r\) by \(\frac{a_l + a_{l+1} + \dots + a_r}{r-l+1}\). For example, if for volumes \([1, 3, 6, 7]\) you choose \(l = 2, r = 3\), new volumes of water will be \([1, 4.5, 4.5, 7]\). You can perform this operation any number of times.
What is the lexicographically smallest sequence of volumes of water that you can achieve?
As a reminder:
A sequence \(a\) is lexicographically smaller than a sequence \(b\) of the same length if and only if the following holds: in the first (leftmost) position where \(a\) and \(b\) differ, the sequence \(a\) has a smaller element than the corresponding element in \(b\).
Input:
The first line contains an integer \(n\) (\(1 \le n \le 10^6\)) — the number of water tanks.
The second line contains \(n\) integers \(a_1, a_2, \dots, a_n\) (\(1 \le a_i \le 10^6\)) — initial volumes of water in the water tanks, in liters.
Because of large input, reading input as doubles is not recommended.
Output
Print the lexicographically smallest sequence you can get. In the \(i\)-th line print the final volume of water in the \(i\)-th tank.
Your answer is considered correct if the absolute or relative error of each \(a_i\) does not exceed \(10^{-9}\).
Formally, let your answer be \(a_1, a_2, \dots, a_n\), and the jury's answer be \(b_1, b_2, \dots, b_n\). Your answer is accepted if and only if \(\frac{|a_i - b_i|}{\max{(1, |b_i|)}} \le 10^{-9}\) for each \(i\).
Sample Input:
4
7 5 5 7
Sample Output:
5.666666667
5.666666667
5.666666667
7.000000000
Sample Input:
5
7 8 8 10 12
Sample Output:
7.000000000
8.000000000
8.000000000
10.000000000
12.000000000
Sample Input:
10
3 9 5 5 1 7 5 3 8 7
Sample Output:
3.000000000
5.000000000
5.000000000
5.000000000
5.000000000
5.000000000
5.000000000
5.000000000
7.500000000
7.500000000
思路:
贪心.相邻两项考虑.
假设分成两块\(a\),\(b\),这时有\(y\).如果\(y\leq b\),\(y\)与\(b\)必须合并,因为合并后变小.
如果这时新合并的\(by\leq a\),那么也必须合并,就这样while循环下去.
复杂度分析:感性分析能过...
AC代码:
#include<bits/stdc++.h>
const int mod = 1e9 + 7;
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e6+7;
int s[maxn];
pair<ll,int>que[maxn];
int main() {
int n,pos=0;
scanf("%d",&n);
for(int i=1;i<=n;++i) {
scanf("%d",&s[i]);
}
for(int i=1;i<=n;++i){
que[++pos]=make_pair(s[i],1);
while(pos>1&&que[pos-1].first*que[pos].second>=que[pos].first*que[pos-1].second){
que[pos-1].second+=que[pos].second;
que[pos-1].first+=que[pos].first;
pos--;
}
}
for(int i=1;i<=pos;++i){
double ans=(double)que[i].first/(que[i].second*1.0);
for(int j=0;j<que[i].second;++j){
printf("%.12f\n",ans);
}
}
return 0;
}
[CF百场计划]#2 Codeforces Round #618 (Div. 2)的更多相关文章
- CF&&CC百套计划3 Codeforces Round #204 (Div. 1) A. Jeff and Rounding
http://codeforces.com/problemset/problem/351/A 题意: 2*n个数,选n个数上取整,n个数下取整 最小化 abs(取整之后数的和-原来数的和) 先使所有的 ...
- CF&&CC百套计划4 Codeforces Round #276 (Div. 1) A. Bits
http://codeforces.com/contest/484/problem/A 题意: 询问[a,b]中二进制位1最多且最小的数 贪心,假设开始每一位都是1 从高位i开始枚举, 如果当前数&g ...
- CF&&CC百套计划4 Codeforces Round #276 (Div. 1) E. Sign on Fence
http://codeforces.com/contest/484/problem/E 题意: 给出n个数,查询最大的在区间[l,r]内,长为w的子区间的最小值 第i棵线段树表示>=i的数 维护 ...
- CF&&CC百套计划3 Codeforces Round #204 (Div. 1) E. Jeff and Permutation
http://codeforces.com/contest/351/problem/E 题意: 给出一些数,可以改变任意数的正负,使序列的逆序对数量最少 因为可以任意加负号,所以可以先把所有数看作正数 ...
- CF&&CC百套计划3 Codeforces Round #204 (Div. 1) B. Jeff and Furik
http://codeforces.com/contest/351/problem/B 题意: 给出一个n的排列 第一个人任选两个相邻数交换位置 第二个人有一半的概率交换相邻的第一个数>第二个数 ...
- CF&&CC百套计划3 Codeforces Round #204 (Div. 1) D. Jeff and Removing Periods
http://codeforces.com/problemset/problem/351/D 题意: n个数的一个序列,m个操作 给出操作区间[l,r], 首先可以删除下标为等差数列且数值相等的一些数 ...
- [CF百场计划]#3 Educational Codeforces Round 82 (Rated for Div. 2)
A. Erasing Zeroes Description You are given a string \(s\). Each character is either 0 or 1. You wan ...
- [CF百场计划]Codeforces Round #617 (Div. 3)
A. Array with Odd Sum Description You are given an array \(a\) consisting of \(n\) integers. In one ...
- CF&&CC百套计划1 Codeforces Round #449 B. Ithea Plays With Chtholly
http://codeforces.com/contest/896/problem/B 题意: 交互题 n张卡片填m个1到c之间的数,1<=n*ceil(c/2)<=m 最后填出一个单调非 ...
随机推荐
- 对jsp中的js进行调试的方法
在js中 输入debugger 就可以了
- reduce()、filter()、map()、some()、every()、...展开属性
reduce().filter().map().some().every()....展开属性 这些概念属于es5.es6中的语法,跟react+redux并没有什么联系,我们直接在https:// ...
- (20)sopel算法
基础知识的理论,主要看这个博客:https://blog.csdn.net/github_38140310/article/details/68959931 然后代码展示: #include &quo ...
- ACM-DFS Template
自己写的DFSTemplate: // DFS_Template.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" //DFS的思想是:一直向 ...
- 本地的jar包导入到maven仓库
需要引入本地jar,然后百度跟着教程实现了,做个记录加深印象.https://www.cnblogs.com/lixuwu/p/5855031.html 1首先找到要传入maven的jar包(放在一个 ...
- win10 metasploit-framework 安装
1.metasploit.com官网下载.msi文件(可能下载速度会很慢) 2.安装时务必关闭Windows Defender及其他杀毒软件,并在安装完成后设置metasploit文件夹为白名单 wi ...
- C++的随机数
C++产生随机数 C++中没有自带的random函数,要实现随机数的生成就需要使用rand()和srand(). 不过,由于rand()的内部实现是用线性同余法做的,所以生成的并不是真正的随机数,而是 ...
- P 1022 D进制的A+B
转跳点 :
- UVA - 12716 GCD XOR(GCD等于XOR)(数论)
题意:输入整数n(1<=n<=30000000),有多少对整数(a, b)满足:1<=b<=a<=n,且gcd(a,b)=a XOR b. 分析:因为c是a的约数,所以枚 ...
- HDU-1114 完全背包+恰好装满问题
B - Piggy-Bank Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...