HBase 中加盐(Salting)之后的表如何读取:Spark 篇
我们知道,HBase 为我们提供了 hbase-mapreduce 工程包含了读取 HBase 表的 InputFormat
、OutputFormat
等类。这个工程的描述如下:
This module contains implementations of InputFormat, OutputFormat, Mapper, Reducer, etc which are needed for running MR jobs on tables, WALs, HFiles and other HBase specific constructs. It also contains a bunch of tools: RowCounter, ImportTsv, Import, Export, CompactionTool, ExportSnapshot, WALPlayer, etc.
我们也知道,虽然上面描述的是 MR jobs,但是 Spark 也是可以使用这些 InputFormat
、OutputFormat
来读写 HBase 表的,如下:
val sparkSession = SparkSession.builder .appName( "HBase" ) .getOrCreate() val conf = HBaseConfiguration.create() conf.set(TableInputFormat.INPUT _ TABLE, "iteblog" ) val HBaseRdd = sparkSession.sparkContext.newAPIHadoopRDD(conf, classOf[TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result]) println(HBaseRdd.count()) |
上面程序使用 TableInputFormat
计算了 iteblog 表的总行数。如果我们想查询某个 UID 的所有历史记录如何实现呢?如果你查看 TableInputFormat
代码,你会发现其包含了很大参数设置:
hbase.mapreduce.inputtable hbase.mapreduce.splittable hbase.mapreduce.scan hbase.mapreduce.scan.row.start hbase.mapreduce.scan.row.stop hbase.mapreduce.scan.column.family hbase.mapreduce.scan.columns hbase.mapreduce.scan.timestamp hbase.mapreduce.scan.timerange.start hbase.mapreduce.scan.timerange.end hbase.mapreduce.scan.maxversions hbase.mapreduce.scan.cacheblocks hbase.mapreduce.scan.cachedrows hbase.mapreduce.scan.batchsize hbase.mapreduce.inputtable.shufflemaps |
其中 hbase.mapreduce.inputtable
就是需要查询的表,也就是上面 Spark 程序里面的 TableInputFormat.INPUT_TABLE
。而 hbase.mapreduce.scan.row.start
和 hbase.mapreduce.scan.row.stop
分别对应的是需要查询的起止 Rowkey,所以我们可以利用这个信息来实现某个范围的数据查询。但是要注意的是,iteblog 这张表是加盐了,所以我们需要在 UID 之前加上一些前缀,否则是查询不到数据的。不过 TableInputFormat
并不能实现这个功能。那如何处理呢?答案是重写 TableInputFormat
的 getSplits
方法。
从名字也可以看出 getSplits
是计算有多少个 Splits。在 HBase 中,一个 Region 对应一个 Split,对应于 TableSplit
实现类。TableSplit
的构造是需要传入 startRow
和 endRow
。startRow
和 endRow
对应的就是上面 hbase.mapreduce.scan.row.start
和 hbase.mapreduce.scan.row.stop
参数传进来的值,所以如果我们需要处理加盐表,就需要在这里实现。
另一方面,我们可以通过 RegionLocator
的 getStartEndKeys()
拿到某张表所有 Region 的 StartKeys 和 EndKeys 的。然后将拿到的 StartKey 和用户传进来的 hbase.mapreduce.scan.row.start
和 hbase.mapreduce.scan.row.stop
值进行拼接即可实现我们要的需求。根据这个思路,我们的代码就可以按照如下实现:
package com.iteblog.data.spark; import java.io.IOException; import java.util.ArrayList; import java.util.List; import com.google.common.base.Strings; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.ConnectionFactory; import org.apache.hadoop.hbase.client.RegionLocator; import org.apache.hadoop.hbase.mapreduce.TableInputFormat; import org.apache.hadoop.hbase.mapreduce.TableSplit; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.hbase.util.Pair; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.JobContext; public class SaltRangeTableInputFormat extends TableInputFormat { @Override public List<InputSplit> getSplits(JobContext context) throws IOException { Configuration conf = context.getConfiguration(); String tableName = conf.get(TableInputFormat.INPUT_TABLE); if (Strings.isNullOrEmpty(tableName)) { throw new IOException( "tableName must be provided." ); } Connection connection = ConnectionFactory.createConnection(conf); val table = TableName.valueOf(tableName) RegionLocator regionLocator = connection.getRegionLocator(table); String scanStart = conf.get(TableInputFormat.SCAN_ROW_START); String scanStop = conf.get(TableInputFormat.SCAN_ROW_STOP); Pair< byte [][], byte [][]> keys = regionLocator.getStartEndKeys(); if (keys == null || keys.getFirst() == null || keys.getFirst().length == 0 ) { throw new RuntimeException( "At least one region is expected" ); } List<InputSplit> splits = new ArrayList<>(keys.getFirst().length); for ( int i = 0 ; i < keys.getFirst().length; i++) { String regionLocation = getTableRegionLocation(regionLocator, keys.getFirst()[i]); String regionSalt = null ; if (keys.getFirst()[i].length > 0 ) { regionSalt = Bytes.toString(keys.getFirst()[i]).split( "-" )[ 0 ]; } byte [] startRowKey = Bytes.toBytes(regionSalt + "-" + scanStart); byte [] endRowKey = Bytes.toBytes(regionSalt + "-" + scanStop); InputSplit split = new TableSplit(TableName.valueOf(tableName), startRowKey, endRowKey, regionLocation); splits.add(split); } return splits; } private String getTableRegionLocation(RegionLocator regionLocator, byte [] rowKey) throws IOException { return regionLocator.getRegionLocation(rowKey).getHostname(); } } |
然后我们同样查询 UID = 1000 的用户所有历史记录,那么我们的程序可以如下实现:
package com.iteblog.data.spark import org.apache.hadoop.hbase.HBaseConfiguration import org.apache.hadoop.hbase.client.Result import org.apache.hadoop.hbase.io.ImmutableBytesWritable import org.apache.hadoop.hbase.mapreduce.TableInputFormat import org.apache.hadoop.hbase.util.Bytes import org.apache.spark.sql.SparkSession import scala.collection.JavaConversions. _ object Spark { def main(args : Array[String]) : Unit = { val sparkSession = SparkSession.builder .appName( "HBase" ) .getOrCreate() val conf = HBaseConfiguration.create() conf.set(TableInputFormat.INPUT _ TABLE, "iteblog" ) conf.set(TableInputFormat.SCAN _ ROW _ START, "1000" ) conf.set(TableInputFormat.SCAN _ ROW _ STOP, "1001" ) val HBaseRdd = sparkSession.sparkContext.newAPIHadoopRDD(conf, classOf[SaltRangeTableInputFormat], classOf[ImmutableBytesWritable], classOf[Result]) HBaseRdd.foreach { case ( _ , result) = > val rowKey = Bytes.toString(result.getRow) val cell = result.listCells() cell.foreach { item = > val family = Bytes.toString(item.getFamilyArray, item.getFamilyOffset, item.getFamilyLength) val qualifier = Bytes.toString(item.getQualifierArray, item.getQualifierOffset, item.getQualifierLength) val value = Bytes.toString(item.getValueArray, item.getValueOffset, item.getValueLength) println(rowKey + " \t " + "column=" + family + ":" + qualifier + ", " + "timestamp=" + item.getTimestamp + ", value=" + value) } } } } |
我们编译打包上面的程序,然后使用下面命令运行上述程序:
bin /spark-submit --class com.iteblog.data.spark.Spark --master yarn --deploy-mode cluster --driver-memory 2g --executor-memory 2g ~ /hbase-1 .0-SNAPSHOT.jar |
得到的结果如下:
A-1000-1550572395399 column=f:age, timestamp=1549091990253, value=54 A-1000-1550572395399 column=f:uuid, timestamp=1549091990253, value=e9b10a9f-1218-43fd-bd01 A-1000-1550572413799 column=f:age, timestamp=1549092008575, value=4 A-1000-1550572413799 column=f:uuid, timestamp=1549092008575, value=181aa91e-5f1d-454c-959c A-1000-1550572414761 column=f:age, timestamp=1549092009531, value=33 A-1000-1550572414761 column=f:uuid, timestamp=1549092009531, value=19aad8d3-621a-473c-8f9f B-1000-1550572388491 column=f:age, timestamp=1549091983276, value=1 B-1000-1550572388491 column=f:uuid, timestamp=1549091983276, value=cf720efe-2ad2-48d6-81b8 B-1000-1550572392922 column=f:age, timestamp=1549091987701, value=7 B-1000-1550572392922 column=f:uuid, timestamp=1549091987701, value=8a047118-e130-48cb-adfe ..... |
和前面文章使用 HBase Shell 输出结果一致。
HBase 中加盐(Salting)之后的表如何读取:Spark 篇的更多相关文章
- HBase 中加盐之后的表如何读取:Spark 篇
在 <HBase 中加盐之后的表如何读取:协处理器篇> 文章中介绍了使用协处理器来查询加盐之后的表,本文将介绍第二种方法来实现相同的功能. 我们知道,HBase 为我们提供了 hbase- ...
- HBase中加盐(Salting)之后的表如何读取:协处理器文章
我们介绍了避免数据斑点的三种比较常见方法: 加盐-盐腌 哈希-散列 反转-反转 其中在加盐(Salting)的方法里面是这么描述的:给Rowkey分配一个随机指针以使其和之前排序不同.但是在Rowke ...
- hbase数据加盐(Salting)存储与协处理器查询数据的方法
转自: https://blog.csdn.net/finad01/article/details/45952781 ----------------------------------------- ...
- MD5加密算法中的加盐值 ,和彩虹表攻击 防止彩虹表撞库
一.什么是彩虹表? 彩虹表(Rainbow Tables)就是一个庞大的.针对各种可能的字母组合预先计算好的哈希值的集合,不一定是针对MD5算法的,各种算法的都有,有了它可以快速的破解各类密码.越是复 ...
- hive和hbase本质区别——hbase本质是OLTP的nosql DB,而hive是OLAP 底层是hdfs,需从已有数据库同步数据到hdfs;hive可以用hbase中的数据,通过hive表映射到hbase表
对于hbase当前noSql数据库的一种,最常见的应用场景就是采集的网页数据的存储,由于是key-value型数据库,可以再扩展到各种key-value应用场景,如日志信息的存储,对于内容信息不需要完 ...
- abp架构中加载公共css样式表和公共js的文件目录位置
src\shared\helpers\LocalizedResourcesHelper.ts
- 将HBase中的表加载到hive中
两种方式加载hbase中的表到hive中,一是hive创建外部表关联hbase表数据,二是hive创建普通表将hbase的数据加载到本地 1. 创建外部表 hbase中已经有了一个test表,内容如下 ...
- [Phoenix] 四、加盐表
摘要: 在密码学中,加盐是指在散列之前将散列内容(例如:密码)的任意固定位置插入特定的字符串.这个在散列中加入字符串的方式称为“加盐”.其作用是让加盐后的散列结果和没有加盐的结果不相同,在不同的应用情 ...
- 一种简单的md5加盐加密的方法(防止彩虹表撞库)
md5加密(或者说摘要算法)大家都很熟悉了 就不解释了 现在很多数据库设计都喜欢用单向加密的方式保存密码,验证时对提交的密码再次加密之后做密文对比 /// <summary> 使用MD5加 ...
随机推荐
- HTML5移动端最新兼容问题解决方案
1.安卓浏览器看背景图片,有些设备会模糊.用同等比例的图片在PC机上很清楚,但是手机上很模糊,原因是什么呢?经过研究,是devicePixelRatio作怪,因为手机分辨率太小,如果按照分辨率来显示网 ...
- linux查看磁盘使用情况命令
第一:统一磁盘整体情况,包括磁盘大小,已使用,可用1.查看当前目录命令 df -h1结果: 统一每个目录下磁盘的整体情况 2.查看指定目录在命令后直接放目录名,比如查看“usr”目录使用情况: df ...
- opencv3学习1:opencv3.4.10与vs2017环境配置
原教程网址:https://jingyan.baidu.com/article/dca1fa6f13bd55f1a44052b9.html 具体教程网上很多,我也相信大家的搜素能力,作为一个初入C++ ...
- iOS开发Runtime 方法替换
通过#import <objc/runtime.h>我们可以找到: /** * Returns a specified instance method for a given class. ...
- linux添加策略路由python脚本(待完善)
#! _*_ coding:utf-8 _*_ import os,sys,re,fileinput,socket device_list = [] ip_list = [] ip_end = [] ...
- LTE常用标识和参数
1 基本标识 1 .1 IMSI 1.2 IMEI 1.3 MSISDN 1.4 TMSI 1.5 MSRN 2 区域类标识 2.1 GCI 其中 LA是GSM(2g)中的位置区,对应4G中的跟踪区T ...
- Linux学习(二):makefile
编译命令: gcc -o exefile src.c (将src.c编译,链接为exefile可执行文件) gcc -o obj.o -c src.c (将src.c编译为obj.o目标文件) mak ...
- [Objective-C] 001_Hello Objective-C
"Hello Word"从来都是经典中的经典!今天我们就来个"Hello Objective-C"吧. 启动Xcode(6.3.1),从File菜单中选择New ...
- 使用PRTG和panabit结合定位网络阻塞的来源
一.背景 在网络管理工作中,有时会出现网络阻塞,需要定位阻塞来源以采取措施解决问题.二.以一个网络阻塞案例说明定位方法 案例:某企业日常使用多条网络线路,某一段时间发现某条线路传输速率下降,对 ...
- Java实现 洛谷 采药
题目描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的医师为师.医师为了判断他的资质,给他出了一个难题.医师把他带到一个到处都是草药的山洞里对他说:" ...