进程池
进程池 (Process Pool)可以创建多个进程。这些进程就像是随时待命的士兵,准备执行任务(程序)。一个进程池中可以容纳多个待命的士兵。
 
 
 
import multiprocessing as mul

def f(x):
return x**2 pool = mul.Pool(5)
rel = pool.map(f,[1,2,3,4,5,6,7,8,9,10])
print(rel)
 
我们创建了一个容许5个进程的进程池 (Process Pool) 。Pool运行的每个进程都执行f()函数。我们利用map()方法,将f()函数作用到表的每个元素上。这与built-in的map()函数类似,只是这里用5个进程并行处理。如果进程运行结束后,还有需要处理的元素,那么的进程会被用于重新运行f()函数。除了map()方法外,Pool还有下面的常用方法。
apply_async(func,args)  从进程池中取出一个进程执行func,args为func的参数。它将返回一个AsyncResult的对象,你可以对该对象调用get()方法以获得结果。
close()  进程池不再创建新的进程
join()   wait进程池中的全部进程。必须对Pool先调用close()方法才能join。
 
 
 
 
 
练习
有下面一个文件download.txt。
www.sina.com.cn www.163.com www.iciba.com www.cnblogs.com www.qq.com www.douban.com
使用包含3个进程的进程池下载文件中网站的首页。(你可以使用subprocess调用wget或者curl等下载工具执行具体的下载任务)
 

import  multiprocessing as mul
import os
import subprocess
def f(x):
return x**2 pool = mul.Pool(5) rel = pool.map(f,[1,2,3,4,5,6,7,8,9,10]) #print(rel) with open ('download.txt', 'r') as f:
#print(f.read())
for i in f.readlines():
os.environ['i'] = str(i)
print(i) subprocess.call('wget $i',shell=True)
 
 
 
共享内存
 
# modified from official documentation
import multiprocessing def f(n, a):
n.value = 3.14
a[0] = 5 num = multiprocessing.Value('d', 0.0)
arr = multiprocessing.Array('i', range(10)) p = multiprocessing.Process(target=f,args=(num,arr))
p.start()
p.join() print(num.value)
print(arr[:])
 
 
 
3.14
[5, 1, 2, 3, 4, 5, 6, 7, 8, 9]
这里我们实际上只有主进程和Process对象代表的进程。我们在主进程的内存空间中创建共享的内存,也就是Value和Array两个对象。对象Value被设置成为双精度数(d), 并初始化为0.0。而Array则类似于C中的数组,有固定的类型(i, 也就是整数)。在Process进程中,我们修改了Value和Array对象。回到主程序,打印出结果,主程序也看到了两个对象的改变,说明资源确实在两个进程之间共享。
 
 
 
import multiprocessing

def f(x, arr, l):
x.value = 3.14
arr[0] = 5
l.append('Hello') server = multiprocessing.Manager()
x = server.Value('d', 0.0)
arr = server.Array('i', range(10))
l = server.list() proc = multiprocessing.Process(target=f, args=(x, arr, l))
proc.start()
proc.join() print(x.value)
print(arr)
print(l)
 
3.14
array('i', [5, 1, 2, 3, 4, 5, 6, 7, 8, 9])
['Hello']
 
Manager利用list()方法提供了表的共享方式。实际上你可以利用dict()来共享词典,Lock()来共享threading.Lock(注意,我们共享的是threading.Lock,而不是进程的mutiprocessing.Lock。后者本身已经实现了进程共享)等。 这样Manager就允许我们共享更多样的对象。
 
我们在这里不深入讲解Manager在远程情况下的应用。有机会的话,会在网络应用中进一步探索。
 
 
 
 

python_lesson2 多进程探索 (multiprocessing包)的更多相关文章

  1. Python标准库11 多进程探索 (multiprocessing包)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 在初步了解Python多进程之后,我们可以继续探索multiprocessing包 ...

  2. Python标准库10 多进程初步 (multiprocessing包)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们已经见过了使用subprocess包来创建子进程,但这个包有两个很大的局限性: ...

  3. Python学习笔记18:标准库之多进程(multiprocessing包)

    我们能够使用subprocess包来创建子进程.但这个包有两个非常大的局限性: 1) 我们总是让subprocess执行外部的程序,而不是执行一个Python脚本内部编写的函数. 2) 进程间仅仅通过 ...

  4. 多进程模块 multiprocessing

    由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程. multiprocessing包是Python中的多进程 ...

  5. python多进程-----multiprocessing包

    multiprocessing并非是python的一个模块,而是python中多进程管理的一个包,在学习的时候可以与threading这个模块作类比,正如我们在上一篇转载的文章中所提,python的多 ...

  6. Python多进程(multiprocessing)

    Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊.普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为 ...

  7. Python多进程并发(multiprocessing)用法实例详解

    http://www.jb51.net/article/67116.htm 本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Pyt ...

  8. 多进程(multiprocessing module)

    一.多进程 1.1 多进程的概念 由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了非常好 ...

  9. Python多进程库multiprocessing中进程池Pool类的使用[转]

    from:http://blog.csdn.net/jinping_shi/article/details/52433867 Python多进程库multiprocessing中进程池Pool类的使用 ...

随机推荐

  1. TP5.0登录验证码实现

    <div class="loginbox-textbox"> <input class="form-control" placeholder= ...

  2. MySQL复制表结构以及复制表等等

    mysql中用命令行复制表结构的方法主要有一下几种: 1.只复制表结构到新表 1 CREATE TABLE 新表 SELECT * FROM 旧表 WHERE 1=2; 或 1 CREATE TABL ...

  3. Unity设置应用后台运行

  4. spark学习笔记总结

    Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高 ...

  5. springboot系列——重试机制原理和应用,还有比这个讲的更好的吗(附完整源码)

    1. 理解重试机制 2. 总结重试机制使用场景 3. spring-retry重试组件 4. 手写一个基于注解的重试组件 5. 重试机制下会出现的问题 6. 模板方法设计模式实现异步重试机制 如果有, ...

  6. [Android应用开发] 04.页面跳转和数据传输

    *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...

  7. GitHub+jsDelivr+PicGo 打造稳定快速、高效免费图床

    标题: GitHub+jsDelivr+PicGo 打造稳定快速.高效免费图床 作者: 梦幻之心星 347369787@QQ.com 标签: [GitHub, 图床] 目录: 图床 日期: 2019- ...

  8. 五、Java - 集合

    一.集合 Java 中的集合类存放于 java.util 包中,是一个存放对象的容器. 集合存放的是对对象的引用,对象本身还是存在于 JVM 堆内存中. 存放的是对象,即引用数据类型,对于基本数据类型 ...

  9. Matlab矩阵学习一 矩阵的创建

    Matlab矩阵创建 1.直接输入数值创建       矩阵元素要用[ ] 括起来,";"代表一行结束,以下创建方式也是合法的,矩阵的元素可以是实数,也可以是复数,复数用a+bi表 ...

  10. 03 . Python入门之运算符

    一.什么是运算符? 举个简单的例子** 4 +5 = 9 . 例子中,4** 和 5 被称为操作数,"+" 称为运算符. Python语言支持以下类型的运算符: [算术运算符] [ ...