bagging

随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输 入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本 为那一类。

在建立每一棵决策树的过程中,有两点需要注意 - 采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那 么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M 个feature中,选择m个(m << M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一 个分类。一般很多的决策树算法都一个重要的步骤 - 剪枝,但是这里不这样干,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。

按这种算法得到的随机森林中的每一棵都是很弱的,但是大家组合起来就很厉害了。我觉得可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域 的专家(因为我们从M个feature中选择m让每一棵决策树进行学习),这样在随机森林中就有了很多个精通不同领域的专家,对一个新的问题(新的输入数 据),可以用不同的角度去看待它,最终由各个专家,投票得到结果。

优点

  • 在数据集上表现良好
  • 在当前的很多数据集上,相对其他算法有着很大的优势
  • 它能够处理很高维度(feature很多)的数据,并且不用做特征选择
  • 在训练完后,它能够给出哪些feature比较重要
  • 在创建随机森林的时候,对generlization error使用的是无偏估计
  • 训练速度快
  • 在训练过程中,能够检测到feature间的互相影响
  • 容易做成并行化方法
  • 实现比较简单

随机森林RF的更多相关文章

  1. 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别

    目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...

  2. 【机器学习】随机森林RF

    随机森林(RF, RandomForest)包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定.通过自助法(boot-strap)重采样技术,不断生成训练样本和测试样本,由训练样本 ...

  3. Bagging与随机森林(RF)算法原理总结

    Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没 ...

  4. 机器学习总结(二)bagging与随机森林

    一:Bagging与随机森林 与Boosting族算法不同的是,Bagging和随机森林的个体学习器之间不存在强的依赖关系,可同时生成并行化的方法. Bagging算法 bagging的算法过程如下: ...

  5. SIGAI机器学习第十九集 随机森林

    讲授集成学习的概念,Bootstrap抽样,Bagging算法,随机森林的原理,训练算法,包外误差,计算变量的重要性,实际应用 大纲: 集成学习简介 Boostrap抽样 Bagging算法 随机森林 ...

  6. 机器学习入门-随机森林预测温度-不同参数对结果的影响调参 1.RandomedSearchCV(随机参数组的选择) 2.GridSearchCV(网格参数搜索) 3.pprint(顺序打印) 4.rf.get_params(获得当前的输入参数)

    使用了RamdomedSearchCV迭代100次,从参数组里面选择出当前最佳的参数组合 在RamdomedSearchCV的基础上,使用GridSearchCV在上面最佳参数的周围选择一些合适的参数 ...

  7. 机器学习入门-随机森林温度预测的案例 1.datetime.datetime.datetime(将字符串转为为日期格式) 2.pd.get_dummies(将文本标签转换为one-hot编码) 3.rf.feature_importances_(研究样本特征的重要性) 4.fig.autofmt_xdate(rotation=60) 对标签进行翻转

    在这个案例中: 1. datetime.datetime.strptime(data, '%Y-%m-%d') # 由字符串格式转换为日期格式 2. pd.get_dummies(features)  ...

  8. 随机森林(Random Forest,简称RF)

    阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Pyth ...

  9. 集成学习_Bagging 和随机森林(rf)

       集成学习方式总共有3种:bagging-(RF).boosting-(GBDT/Adaboost/XGBOOST).stacking      下面将对Bagging 进行介绍:(如下图所示) ...

随机推荐

  1. mitmproxy 配置

    pip install mitmproxy Man In The Middle 原理 mitmproxy工程工具包,主要包含了3个组件 功能一致,交互界面不同 mitmproxy:命令行界面,wind ...

  2. 02.Delphi通过接口实现多重继承

    uSayHello类如下: unit uSayHello; interface type // 接口 IGreetable = interface ['{D91DDE09-0FC4-4FE9-AE0D ...

  3. docker安装centos7镜像

    拉取centos7镜像[root@localhost ~]# docker pull centos:71启动镜像centos7,如果不指定 /bin/bash,容器运行后会自动停止[root@loca ...

  4. python进阶 廖雪峰(慕课网)

    1.函数式编程 变量名可以指向函数,那么函数就可以通过一个变量传递给另一个函数或者变量. map()函数:接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到 ...

  5. 你从未见过的Case Study写作指南

    Case Study,意为案例分析,Case Study与其它的留学论文作业最大的的差别就在于Case Study在论文开始就需要明确给出论,然后再阐述这个结论的论证依据和理由.留学生们需要知道的是C ...

  6. git上传流程

    转: 1.在github上创建项目 2.使用git clone https://github.com/xxxxxxx/xxxxx.git克隆到本地 3.编辑项目 4.git add . (将改动添加到 ...

  7. 利用vim查看日志,快速定位问题《转载》

    利用vim查看日志,快速定位问题 链接:https://www.cnblogs.com/abcwt112/p/5192944.html

  8. 147-PHP strip_tags函数,剥去字符串中的 HTML 标签(一)

    <?php $html=<<<HTM <title>PHP输出HTML代码</title> <body> <a href=#>转 ...

  9. XTU 1205 Range

    还是五月湘潭赛的题目,当时就是因为我坑...连个银牌都没拿到,擦. 这个题目枚举区间是不可能的,明显是要考虑每个数对全局的影响,即找到每个数最左和最右能满足是最大的位置 以及 最小的时候,相乘即为该数 ...

  10. Essay引用如何最大限度的降低抄袭率

    今天要说到让无数人恨得要死.为了降重改的哭天喊地的“Paraphrase”.毕竟引用不是打两个引号复制粘贴就能凑字数完事的,无论国内外,都有查重率这个大敌在等着你.想要引用别人的论点论据,就少不了需要 ...