pytorch 自动求梯度
自动求梯度
在深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。本节将介绍如何使用autograd包来进行自动求梯度的有关操作。
概念
上一节介绍的Tensor
是这个包的核心类,如果将其属性.requires_grad
设置为True
,它将开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了)。完成计算后,可以调用.backward()
来完成所有梯度计算。此Tensor
的梯度将累积到.grad
属性中。
注意在
y.backward()
时,如果y
是标量,则不需要为backward()
传入任何参数;否则,需要传入一个与y
同形的Tensor
。
如果不想要被继续追踪,可以调用.detach()
将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪,这样梯度就传不过去了。此外,还可以用with torch.no_grad()
将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(requires_grad=True
)的梯度。
Function
是另外一个很重要的类。Tensor
和Function
互相结合就可以构建一个记录有整个计算过程的有向无环图(DAG)。每个Tensor
都有一个.grad_fn
属性,该属性即创建该Tensor
的Function
, 就是说该Tensor
是不是通过某些运算得到的,若是,则grad_fn
返回一个与这些运算相关的对象,否则是None。
下面通过一些例子来理解这些概念。
Tensor
创建一个Tensor
并设置requires_grad=True
:
x = torch.ones(2, 2, requires_grad=True)
print(x)
print(x.grad_fn)
输出:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
None
再做一下运算操作:
y = x + 2
print(y)
print(y.grad_fn)
输出:
tensor([[3., 3.],
[3., 3.]], grad_fn=<AddBackward>)
<AddBackward object at 0x1100477b8>
注意x是直接创建的,所以它没有grad_fn
, 而y是通过一个加法操作创建的,所以它有一个为<AddBackward>
的grad_fn
。
像x这种直接创建的称为叶子节点,叶子节点对应的grad_fn
是None
。
print(x.is_leaf, y.is_leaf) # True False
再来点复杂度运算操作:
z = y * y * 3
out = z.mean()
print(z, out)
输出:
tensor([[27., 27.],
[27., 27.]], grad_fn=<MulBackward>) tensor(27., grad_fn=<MeanBackward1>)
通过.requires_grad_()
来用in-place的方式改变requires_grad
属性:
a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad) # False
a.requires_grad_(True)
print(a.requires_grad) # True
b = (a * a).sum()
print(b.grad_fn)
输出:
False
True
<SumBackward0 object at 0x118f50cc0>
梯度
因为out
是一个标量,所以调用backward()
时不需要指定求导变量:
out.backward() # 等价于 out.backward(torch.tensor(1.))
我们来看看out
关于x
的梯度 \(\frac{d(out)}{dx}\):
print(x.grad)
输出:
tensor([[4.5000, 4.5000],
[4.5000, 4.5000]])
我们令out
为 \(o\) , 因为
\]
所以
\]
所以上面的输出是正确的。
数学上,如果有一个函数值和自变量都为向量的函数 \(\vec{y}=f(\vec{x})\), 那么 \(\vec{y}\) 关于 \(\vec{x}\) 的梯度就是一个雅可比矩阵(Jacobian matrix):
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}}\\
\vdots & \ddots & \vdots\\
\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right)
\]
而torch.autograd
这个包就是用来计算一些雅克比矩阵的乘积的。例如,如果 \(v\) 是一个标量函数的 \(l=g\left(\vec{y}\right)\) 的梯度:
\]
那么根据链式法则我们有 \(l\) 关于 \(\vec{x}\) 的雅克比矩阵就为:
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}}\\
\vdots & \ddots & \vdots\\
\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right)=\left(\begin{array}{ccc}\frac{\partial l}{\partial x_{1}} & \cdots & \frac{\partial l}{\partial x_{n}}\end{array}\right)
\]
注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以一般在反向传播之前需把梯度清零。
# 再来反向传播一次,注意grad是累加的
out2 = x.sum()
out2.backward()
print(x.grad)
out3 = x.sum()
x.grad.data.zero_()
out3.backward()
print(x.grad)
输出:
tensor([[5.5000, 5.5000],
[5.5000, 5.5000]])
tensor([[1., 1.],
[1., 1.]])
为什么在
y.backward()
时,如果y
是标量,则不需要为backward()
传入任何参数;否则,需要传入一个与y
同形的Tensor
?
简单来说就是为了避免向量(甚至更高维张量)对张量求导,而转换成标量对张量求导。举个例子,假设形状为m x n
的矩阵 X 经过运算得到了p x q
的矩阵 Y,Y 又经过运算得到了s x t
的矩阵 Z。那么按照前面讲的规则,dZ/dY 应该是一个s x t x p x q
四维张量,dY/dX 是一个p x q x m x n
的四维张量。问题来了,怎样反向传播?怎样将两个四维张量相乘???这要怎么乘???就算能解决两个四维张量怎么乘的问题,四维和三维的张量又怎么乘?导数的导数又怎么求,这一连串的问题,感觉要疯掉……
为了避免这个问题,我们不允许张量对张量求导,只允许标量对张量求导,求导结果是和自变量同形的张量。所以必要时我们要把张量通过将所有张量的元素加权求和的方式转换为标量,举个例子,假设y
由自变量x
计算而来,w
是和y
同形的张量,则y.backward(w)
的含义是:先计算l = torch.sum(y * w)
,则l
是个标量,然后求l
对自变量x
的导数。
参考
来看一些实际例子。
x = torch.tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)
y = 2 * x
z = y.view(2, 2)
print(z)
输出:
tensor([[2., 4.],
[6., 8.]], grad_fn=<ViewBackward>)
现在 z
不是一个标量,所以在调用backward
时需要传入一个和z
同形的权重向量进行加权求和得到一个标量。
v = torch.tensor([[1.0, 0.1], [0.01, 0.001]], dtype=torch.float)
z.backward(v)
print(x.grad)
输出:
tensor([2.0000, 0.2000, 0.0200, 0.0020])
注意,x.grad
是和x
同形的张量。
再来看看中断梯度追踪的例子:
x = torch.tensor(1.0, requires_grad=True)
y1 = x ** 2
with torch.no_grad():
y2 = x ** 3
y3 = y1 + y2
print(x.requires_grad)
print(y1, y1.requires_grad) # True
print(y2, y2.requires_grad) # False
print(y3, y3.requires_grad) # True
输出:
True
tensor(1., grad_fn=<PowBackward0>) True
tensor(1.) False
tensor(2., grad_fn=<ThAddBackward>) True
可以看到,上面的y2
是没有grad_fn
而且y2.requires_grad=False
的,而y3
是有grad_fn
的。如果我们将y3
对x
求梯度的话会是多少呢?
y3.backward()
print(x.grad)
输出:
tensor(2.)
为什么是2呢?$ y_3 = y_1 + y_2 = x^2 + x^3$,当 \(x=1\) 时 \(\frac {dy_3} {dx}\) 不应该是5吗?事实上,由于 \(y_2\) 的定义是被torch.no_grad():
包裹的,所以与 \(y_2\) 有关的梯度是不会回传的,只有与 \(y_1\) 有关的梯度才会回传,即 \(x^2\) 对 \(x\) 的梯度。
上面提到,y2.requires_grad=False
,所以不能调用 y2.backward()
,会报错:
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
此外,如果我们想要修改tensor
的数值,但是又不希望被autograd
记录(即不会影响反向传播),那么我么可以对tensor.data
进行操作。
x = torch.ones(1,requires_grad=True)
print(x.data) # 还是一个tensor
print(x.data.requires_grad) # 但是已经是独立于计算图之外
y = 2 * x
x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播
y.backward()
print(x) # 更改data的值也会影响tensor的值
print(x.grad)
输出:
tensor([1.])
False
tensor([100.], requires_grad=True)
tensor([2.])
注: 本文主要参考PyTorch官方文档,与原书同一节有很大不同。
pytorch 自动求梯度的更多相关文章
- PyTorch入门学习(二):Autogard之自动求梯度
autograd包是PyTorch中神经网络的核心部分,简单学习一下. autograd提供了所有张量操作的自动求微分功能. 它的灵活性体现在可以通过代码的运行来决定反向传播的过程, 这样就使得每一次 ...
- Pytorch中的自动求梯度机制和Variable类
自动求导机制是每一个深度学习框架中重要的性质,免去了手动计算导数,下面用代码介绍并举例说明Pytorch的自动求导机制. 首先介绍Variable,Variable是对Tensor的一个封装,操作和T ...
- 从头学pytorch(二) 自动求梯度
PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,ten ...
- TensorFlow自动求梯度
例1 import tensorflow as tf a=tf.Variable(tf.constant(1.0),name='a') b=tf.Variable(tf.constant(1.0),n ...
- 『PyTorch x TensorFlow』第六弹_从最小二乘法看自动求导
TensoFlow自动求导机制 『TensorFlow』第二弹_线性拟合&神经网络拟合_恰是故人归 下面做了三个简单尝试, 利用包含gradients.assign等tf函数直接构建图进行自动 ...
- pytorch的自动求导机制 - 计算图的建立
一.计算图简介 在pytorch的官网上,可以看到一个简单的计算图示意图, 如下. import torchfrom torch.autograd import Variable x = Variab ...
- Pytorch中的自动求导函数backward()所需参数含义
摘要:一个神经网络有N个样本,经过这个网络把N个样本分为M类,那么此时backward参数的维度应该是[N X M] 正常来说backward()函数是要传入参数的,一直没弄明白backward需要传 ...
- Pytorch Tensor, Variable, 自动求导
2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地 ...
- PytorchZerotoAll学习笔记(三)--自动求导
Pytorch给我们提供了自动求导的函数,不用再自己再推导计算梯度的公式了 虽然有了自动求导的函数,但是这里我想给大家浅析一下:深度学习中的一个很重要的反向传播 references:https:// ...
随机推荐
- 0203 生成mysql的数据库的数据字典
原理 项目的数据库字典表是一个很重要的文档.通过此文档可以清晰的了解数据表结构及开发者的设计意图. 通常为了方便我都是直接在数据库中建表,然后通过工具导出数据字典. 在Mysql数据库中有一个info ...
- Eclipse 不能调试的问题
现象 弹出 Cannot connect to VM Console 中的输出是: ERROR: transport error 202: connect failed: Connection ref ...
- java项目构建工具Maven
一.java-maven常用命令 mvn archetype:create 创建Maven项目 mvn compile 编译源代码 mvn deploy 发布项目 mvn test-compile 编 ...
- Exceeded memory limit for $group, but didn't allow external sort. Pass allowDiskUse:true to opt in
原语句: db.carMongoDTO.aggregate({}}}, {}}}) 报错: Exceeded memory limit for $group, but didn't allow ext ...
- Vuex基本介绍
1.什么是Vuex Vuex是一个专为vue.js应用程序开发的状态管理模式. 状态管理:data里面的变量都是vue的状态. 2.为什么要用Vuex 当我们构建一个中大型的单页面应用程序时,Vuex ...
- UVA - 11572 Unique Snowflakes(唯一的雪花)(滑动窗口)
题意:输入一个长度为n(n <= 10^6)的序列A,找到一个尽量长的连续子序列AL~AR,使得该序列中没有相同的元素. 分析: 法一:从r=0开始不断增加r,当a[r+1]在子序列a[l~r] ...
- yarn storm spark
单机zookeeper http://coolxing.iteye.com/blog/1871009 storm http://os.51cto.com/art/201309/411003_2.htm ...
- mui 横屏 竖屏
在项目中只有某个页面需要横屏 ,其他的都是竖屏展示的. 假设a页面横屏 ,返回之后竖屏 b页面 a+ 将其设置为横屏显示: b+ 将其设置为竖屏显示 但是进入a页面之后再返回b页面时 b页面也会称为横 ...
- jetty启动项目后js修改后无法保存
在web.xml中加入如下配置即可: <servlet> <servlet-name>default</servlet-name> <servlet-clas ...
- 04-String——课后动手动脑
1.请运行以下示例代码StringPool.java,查看输出结果.如何解释这样的输出结果?从中你能总结出什么? public class StringPool { public static voi ...