题意:01背包:有N件物品和一个容量为V的背包。每种物品均只有一件。第i件物品的费用是volume[i],价值是value[i],求解将哪些物品装入背包可使价值总和最大。

分析:

1、构造二维数组:

dp[i][j]---前i件物品放入一个容量为j的背包可以获得的最大价值。

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - volume[i]] + value[i]);---(a)

(1)dp[i - 1][j]---不放第i件物品,因此前i件物品放入一个容量为j的背包的价值与前i-1件物品放入一个容量为j的背包的价值相同。

(2)dp[i - 1][j - volume[i]] + value[i]---放入第i件物品,因为当前背包容量为j,所以需要将前i-1件物品放入容量为j-volume[i]的背包里,剩下的容量为volume[i]的空间放第i件物品。

2、构造滚动数组:(一维)

dp[j]---当前状态是容量为j的背包所得价值。

dp[j] = max(dp[j], dp[j - volume[i]] + value[i]);---(b)

比较上述a式,

b式中的第一个dp[j]是考虑第i件物品的,即当前状态。

而 dp[j - volume[i]] + value[i]和第二个dp[j]是考虑第i-1件物品的,即前一个状态。

因此通过逆序枚举(V……volume[i])的方式更新dp[j]。

原因:因为如果正序,对于正在考虑的物品i,前面已更新的dp[j]会对后面更大容量的dp[j]的更新产生影响,

即此时你计算的dp[i][j](用二维数组表示)其实是max(dp[i - 1][j], dp[i][j-volume[i])。

而逆序枚举,对于当前研究的物品i状态下的dp[j](即将计算),dp[j]和更小容量的dp[j - volume[i]]都是未更新的,也就是我们需要的前一状态,即第i-1件物品的情况。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 1000 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int value[MAXN], volume[MAXN], dp[MAXN];
int main(){
int T;
scanf("%d", &T);
while(T--){
int N, V;
scanf("%d%d", &N, &V);
for(int i = 0; i < N; ++i){
scanf("%d", &value[i]);
}
for(int i = 0; i < N; ++i){
scanf("%d", &volume[i]);
}
memset(dp, 0, sizeof dp);
for(int i = 0; i < N; ++i){
for(int j = V; j >= volume[i]; --j){
dp[j] = max(dp[j], dp[j - volume[i]] + value[i]);
}
}
printf("%d\n", dp[V]);
}
return 0;
}

  

HDU - 2602 Bone Collector(01背包讲解)的更多相关文章

  1. HDU 2602 Bone Collector(01背包裸题)

    Bone Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  2. HDU 2602 - Bone Collector - [01背包模板题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 Many years ago , in Teddy’s hometown there was a ...

  3. HDU 2602 Bone Collector --01背包

    这种01背包的裸题,本来是不想写解题报告的.但是鉴于还没写过背包的解题报告.于是来一发. 这个真的是裸的01背包. 代码: #include <iostream> #include < ...

  4. HDU 2602 Bone Collector (01背包DP)

    题意:给定一个体积,和一些物品的价值和体积,问你最大的价值. 析:最基础的01背包,dp[i] 表示体积 i 时最大价值. 代码如下: #pragma comment(linker, "/S ...

  5. [HDU 2602]Bone Collector ( 0-1背包水题 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 水题啊水题 还给我WA了好多次 因为我在j<w[i]的时候状态没有下传.. #includ ...

  6. HDU 2602 Bone Collector (01背包问题)

    原题代号:HDU 2602 原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 原题描述: Problem Description Many yea ...

  7. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  8. HDU 2602 Bone Collector 0/1背包

    题目链接:pid=2602">HDU 2602 Bone Collector Bone Collector Time Limit: 2000/1000 MS (Java/Others) ...

  9. hdu 2602 Bone Collector(01背包)模板

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 Bone Collector Time Limit: 2000/1000 MS (Java/Ot ...

  10. HDU 2602 Bone Collector(经典01背包问题)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2602 Bone Collector Time Limit: 2000/1000 MS (Java/O ...

随机推荐

  1. 第1节 storm编程:2、storm的基本介绍

    课程大纲: 1.storm的基本介绍 2.storm的架构模型 3.storm的安装 4.storm的UI管理界面 5.storm的编程模型 6.storm的入门程序 7.storm的并行度 8.st ...

  2. 「SCOI2005」栅栏

    传送门 Luogu 解题思路 我们有很显然的这样一条贪心思路: 首先满足长度短的木板,因为如果可以满足长的也肯定可以满足短的,而且可能满足更多. 那么我们就会有这样的思路:枚举一条木板由哪条木板切割而 ...

  3. IOS UIPanGestureRecognizer手势使用及识别状态UIGestureRecognizerState

    UIGestureRecognizerState -- 手势识别器状态 1.先来看官方文档 定义UIGestureRecognizer.h 英文: typedef NS_ENUM(NSInteger, ...

  4. 让Nutz支持最快的模板引擎Smarty4j

    Smarty4j是一个开源的模板引擎.没错,它就是著名的php模板引擎之Java移植版. 它特点就是将模板文件或者字符串编译成java类直接执行,所以效率比一般的模板解释的方式处理要快.它发展较晚,所 ...

  5. UVALive 3231 网络流

    题目要求给m个任务分配给n个机器,但最后任务量最多的那个机器的任务量尽量少,利用最大流,在最后的汇点那里设置关卡,二分结果,把机器到最终汇点的容量设置为该值,这样就达到题目条件,这样跑最大流 还能把m ...

  6. Bug的等级及定位

    缺陷等级一般划分为四个等级:致命.严重.一般.低 一.致命(一级bug) 通常表现为:系统无法运行,崩溃或严重资源不足,应用模块无法启动或者异常退出,主要功能模块无法使用. 比如: 1.系统崩溃(蓝屏 ...

  7. SciPy 插值

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. JS - 判断字符串某个下标的值

    <html><body> <script type="text/javascript"> var str="0123456789!&q ...

  9. python反序列化漏洞

    原理在网页源码中如果出现将用户输入数据进行反序列化当成参数输出时,出现漏洞,可造成任意命令执行例如网页源码try:       become = self.get_argument('become') ...

  10. ffmpeg 知识点

    ffmpeg FFmpeg是一套可以用来记录.转换数字音频.视频,并能将其转化为流的开源计算机程序.采用LGPL或GPL许可证.它提供了录制.转换以及流化音视频的完整解决方案.它包含了非常先进的音频/ ...