洛谷题目传送门

题目描述

有n架飞机需要着陆。每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种。第i架飞机的早着陆时间为Ei,晚着陆时间为Li,不得在其他时间着陆。你的任务是为这些飞机安排着陆方式,使得整个着陆计划尽量安全。换句话说,如果把所有飞机的实际着陆时间按照从早到晚的顺序排列,相邻两个着陆时间间隔的最值(称为安全间隔)应尽量大。

输入格式

输入包含若干组数据。每组数据第一行为飞机的数目n。以下n行每行两个整数,即早着陆时间和晚着陆时间。所有时间t 满足0<=t<=10^7。输入结束标志为文件结束符(EOF)。

输出格式

对于每组数据,输出安全间隔的最大值。(记得换行)

输入输出样例

输入
10
44 156
153 182
48 109
160 201
55 186
54 207
55 165
17 58
132 160
87 197
 
 
输出
 10

  

说明/提示

n <= 2000; 剩下的所有数据保证不超过int范围

首先,从题目的要求来看,xxxx尽量大,xxxx尽量小,一般这种要求我们可以考虑二分查找答案。(套路)

于是,题目就成了判定:是否能使相邻的着陆时间不小于P,即我们目前二分枚举的时间。

继续看题,每种飞机有两种着陆方式:早着陆和晚着陆,考虑分别用0和1表示。

对于这种含有“或”的题,考虑用2—SAT问题进行求解。

建图:

  每一个节点v表示一种选择,一架飞机我们可以拆成两个点:早   与    晚。

   枚举每架飞机和它后面飞机的情况:如果两个时间相差小于P,则连边,表明选择第一种情况就必须选择第二种情况。(在枚举的时候应用for循环从小到大,优先早着陆,尽量贴近P,防止浪费时间)。

跑图:

  建好图之后,要做的就是跑图了。如何跑?当然是直接套用2—SAT问题的模板:用Tarjan强联通算法.

   如建图中所说,我们的‘边’代表的是必须选择。那么,如果我们选择一架飞机的“0”,然后经过一系列传导,又必须选择‘1’,怎么办?(凉拌)

           如果出现这种情况,自相矛盾,那么,原问题肯定无解!!!

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + ; struct edge{
int u,v,next;
}e[maxn << ];
//全部开两倍!!!有两倍的点
int f[maxn << ],low[maxn << ],dfn[maxn << ];
int scc[maxn << ];
bool vis[maxn << ];
int n,cac,cnt,m,top;
stack <int> stack1;
int T[maxn][]; void clean(){//不要被吓到了
for(int i = ;i <= * n; i++){
f[i] = dfn[i] = ;
}
cac = ;
top = ;
return;
} int jueduizhi(int x){
if(x < )x = -x;
return x;
} //-------------------------以下才是重点 void add(int u,int v){
top++;
e[top].u = u;//这个点(起点)
e[top].v = v;//它连向的那个点(终点)
e[top].next = f[u];
f[u] = top;
return;
} void tarjan(int now){
low[now] = dfn[now] = ++cac;//初始化用的
stack1.push(now);
vis[now] = ;
for(int i = f[now]; i ; i = e[i].next){
int v = e[i].v;//有连边
if(!dfn[v]){
tarjan(v);
low[now] = min(low[now],low[v]);
}else if(vis[v])
low[now] = min(low[now],dfn[v]);
}
if(low[now] == dfn[now]){
int cur;
cnt++;//是第几个强连通 ??
do{
cur = stack1.top();
stack1.pop();
vis[cur] = ;
scc[cur] = cnt;//记录每个点所在的强连通
}while(now != cur);
}
} bool two_SAT(){
for(int i = ; i <= * n; i++)
if(!dfn[i] )
tarjan(i);//tarjan找强连通分量
for(int i = ; i <= n; i++)
if(scc[i] == scc[i + n])return ;
//a条件和非a条件在同一个强连通分量,原问题无解
return ;
} bool test(int diff){
clean();
for(int i = ;i <= n; i++)//枚举每架飞机
for(int aval = ;aval < ; aval++)//早还是晚?
for(int j = i + ;j <= n; j++)//往下枚举后面的飞机
for(int bvbl = ;bvbl < ; bvbl++){//一样,分两种情况
if(jueduizhi(T[i][aval] - T[j][bvbl]) < diff){
int a = i,b = j;
int nota = aval ^ ,notb = bvbl ^ ;
add(a + nota * n,b + bvbl * n);
add(b + notb * n,a + aval * n);
}
}
return two_SAT();
} int main(){
// freopen("hh.txt","r",stdin);
while(scanf("%d",&n) != EOF && n){
int l = ,r = ;
for(int i = ;i <= n; i++)
for(int a = ;a < ; a++){
scanf("%d",&T[i][a]);
r = max(r,T[i][a]);
}
while(l < r){
int mid = l + (r - l + ) / ;//必须向上取整,不然全部爆0
//int mid = l + r >> 1;
if(test(mid)) l = mid;
else r = mid - ;
}
printf("%d\n",l);
}
return ;
}

   luogu那道题是自己手打上传的,数据可能有点毒瘤。。。

飞机调度 Now or Later? LA 3211 (2-SAT问题)的更多相关文章

  1. LA 3211 飞机调度

    题目链接:http://vjudge.net/contest/142615#problem/A 题意:n架飞机,每架可选择两个着落时间.安排一个着陆时间表,使得着陆间隔的最小值最大. 分析: 最小值最 ...

  2. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  3. 【LOJ】#2077. 「JSOI2016」飞机调度

    题解 考虑一架飞机飞完自己之后还能飞到哪些航线,用floyd求两点最短路 这个图建出来是个DAG,求最小路径覆盖即可,二分图匹配 注意判断时是航班的起飞时刻+直飞时间+加油时间+最短路时间 代码 #i ...

  4. 【LA3211 训练指南】飞机调度 【2-sat】

    题意 有n嫁飞机需要着陆.每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种.第i架飞机的早着陆时间为Ei,晚着陆时间为Li,不得在其他时间着陆.你的任务是为这些飞机安排着陆方式,使 ...

  5. LA3211 飞机调度 Now or later-二分法&TwoSet

    https://vjudge.net/problem/UVALive-3211 As you must have experienced, instead of landing immediately ...

  6. LA 3211

    As you must have experienced, instead of landing immediately, an aircraft sometimes waits in a holdi ...

  7. BZOJ 4853 [Jsoi2016]飞机调度

    题解: 我严重怀疑语文水平(自己的和出题人的) 把航线按照拓扑关系建立DAG 然后最小路径覆盖 为什么两条首尾相接航线之间不用维护???? #include<iostream> #incl ...

  8. 2-SAT 问题与解法小结

    2-SAT 问题与解法小结 这个算法十分的奇妙qwq... 将一类判定问题转换为图论问题,然后就很容易解决了. 本文有一些地方摘录了一下赵爽<2-SAT解法浅析> (侵删) 一些概念: \ ...

  9. (纪录片)现代生活的秘密规则:算法 The Secret Rules of Modern Living: Algorithms

    简介: The Secret Rules of Modern Living: Algorithms (2015) 导演: David Briggs主演: Marcus du Sautoy类型: 纪录片 ...

随机推荐

  1. 数学--数论--HDU 1098 Ignatius's puzzle (费马小定理+打表)

    Ignatius's puzzle Problem Description Ignatius is poor at math,he falls across a puzzle problem,so h ...

  2. 51NOD 1006 最长公共子序列 Lcs 动态规划 DP 模板题 板子

    给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最 ...

  3. CF786B Legacy(线段树优化建边)

    模板题CF786B Legacy 先说算法 如果需要有n个点需要建图 给m个需要建边的信息,从单点(或区间内所有点)向一区间所有点连边 如果暴力建图复杂度\(mn^2\) 以单点连向区间为例,在n个点 ...

  4. Java大数据秋招面试题

    以下为整理的自己秋招遇到的面试题:主要是Java和大数据相关题型:根据印象整理了下,有些记不起来了. 死锁.乐观锁.悲观锁synchronized底层原理及膨胀机制ReetrantLock底层原理,源 ...

  5. MySQL如何安装-教程

    1.先从官网上下载Mysql压缩包https://dev.mysql.com/downloads/mysql/2.解压出来的mysql压缩包是没有图片中的data文件夹和my.ini 如图所示: 3. ...

  6. 【Hexo】使用Hexo+github pages+travis ci 实现自动化部署

    目录 一.说明 二.成品展示 三.前期准备 本地安装 node.js 本地安装 git github 账号 创建仓库 travis ci 账号 四.安装 Hexo 五.使用 hexo 搭建博客 六.部 ...

  7. Spring中资源的加载原来是这么一回事啊!

    1. 简介 在JDK中 java.net.URL 适用于加载资源的类,但是 URL 的实现类都是访问网络资源的,并没有可以从类路径或者相对路径获取文件及 ServletContext , 虽然可以通过 ...

  8. B. Long Path dp

    https://codeforces.com/problemset/problem/407/B 这个题目是一个dp,有那么一点点的递归的意思,这个应该算一个找规律的dp, dp[i]定义为第一次到第i ...

  9. 绝对一个月精通vue

    马上从vue-cli4练手,要不然,学几年,你也不懂组件式开发,不懂VUEX,不懂路由, 也许你会说你懂, 麻烦你花一个月学vue-cli4以一个完整购物商城来练手,   一个月后,如果还觉得我错,我 ...

  10. STM32 使用IQmath实现SVPWM

    IQMATH TI的片子很香,做的也很好,但是成本相对ST会更高,电机控制方面,TI无疑是做的最好的方案之一,另外TI针对没有浮点运算器的定点DSP推出了IQMATH库,在使用Q格式对数据进行分析和处 ...