题解 洛谷 P4171 【[JSOI2010]满汉全席】
考虑\(2-SAT\)。
将汉式看作\(0\)状态,满式看做\(1\)状态,将每个材料拆成\(01\)两个状态。
从\(a\)向\(b\)连有向边表示的意义为选了\(a\)后必须选\(b\)。
那么每次连边的方式如下:
\(add(x_{a \oplus 1},y_b),add(y_{b \oplus 1},x_a)\)(\(x_a\)和\(y_b\)为评审员的要求,\(x\)和\(y\)表示材料,\(a\)和\(b\)表示状态)
意义为若没有满足评审员的其中一个要求,则另一个要求必须满足。
连边后缩点,若发现\(x_a\)和\(x_{a \oplus 1}\)在同一强连通分量中,则无解。
其他的一些实现的处理,就看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 4000010
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int t,n,m;
char str[5];
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
int dfn_cnt,co_cnt,top;
int dfn[maxn],low[maxn],co[maxn],st[maxn];
bool vis[maxn];
void tarjan(int x)
{
dfn[x]=low[x]=++dfn_cnt;
st[++top]=x;
vis[x]=true;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(!dfn[y])
{
tarjan(y);;
low[x]=min(low[x],low[y]);
}
else if(vis[y])
low[x]=min(low[x],dfn[y]);
}
if(low[x]==dfn[x])
{
co_cnt++;
int now;
do
{
now=st[top--];
vis[now]=false;
co[now]=co_cnt;
}while(now!=x);
}
}
bool check()
{
for(int i=1;i<=2*n;++i)
if(!dfn[i])
tarjan(i);
for(int i=1;i<=n;++i)
if(co[i]==co[i+n])
return false;
return true;
}
void clear()
{
top=dfn_cnt=co_cnt=edge_cnt=0;
memset(co,0,sizeof(co));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(vis,0,sizeof(vis));
memset(head,0,sizeof(head));
}
int main()
{
read(t);
while(t--)
{
clear();
read(n),read(m);
while(m--)
{
int x,y,a,b,len;
scanf("%s",str);
if(str[0]=='h') a=0;
else a=1;
x=0,len=strlen(str);
for(int i=1;i<len;++i) x=x*10+str[i]-'0';
scanf("%s",str);
if(str[0]=='h') b=0;
else b=1;
y=0,len=strlen(str);
for(int i=1;i<len;++i) y=y*10+str[i]-'0';
add(x+(a^1)*n,y+b*n),add(y+(b^1)*n,x+a*n);
}
if(check()) puts("GOOD");
else puts("BAD");
}
return 0;
}
题解 洛谷 P4171 【[JSOI2010]满汉全席】的更多相关文章
- 洛谷 P4171 [JSOI2010]满汉全席 解题报告
P4171 [JSOI2010]满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高 ...
- 洛谷P4171 [JSOI2010] 满汉全席 [2-SAT,Tarjan]
题目传送门 满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉 ...
- [洛谷P4171][JSOI2010]满汉全席
题目大意:有$n$个点,每个点可以选或不选,有$m$组约束,形如$a,u,b,v$,表示$u=a,v=b$中至少要满足一个条件,问是否存在一组解,多组询问 题解:$2-SAT$,感觉是板子题呀,最后判 ...
- 洛谷 P4171 [JSOI]满汉全席
洛谷 最近刚刚学的2-sat,就刷了这道裸题. 2-sat问题一般是用tarjan求的,当出现(x,y)或(!x,y)或(x,!y)三种选择时,我们可以把!x->y,!y->x连边. 然后 ...
- 洛谷P4047 [JSOI2010]部落划分题解
洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
随机推荐
- Python 程序报错崩溃后,如何倒回到崩溃的位置?
假设我们有一段程序,从 Redis 中读取数据,解析以后提取出里面的 name 字段: import json import redis client = redis.Redis() def read ...
- netty--helloword程序
1.使用netty需要使用到下面的java包 netty-all-5.0.0.Alpha2.jar 我们来看下面具体的代码 1. 创建一个ServerBootstrap实例 2. 创建一个EventL ...
- ES7.x客户端的认证创建一步一步来
前言 好久没来写博客了,还是简单的记录一下吧.今天要写的是es在7.x版本后的客户端的创建以及一些es的查询所语句到的小问题.直接先吧客户端端的代码呈上. 正文 public class ESClie ...
- java基础-8种基本类型
正文 java中的八种基础类型. boolean:只有两个值,false,true 带符号类型 byte:占用1个字节,一个字节也就是8位,那么由于是最高一位是用来表示 负还是正,所以范围就是 -2^ ...
- NPM 配置文件修改
NPM 配置文件修改 几乎每一门语言都有配套的包管理器,比如 Ruby 有 RubyGems,Go 有 go modules,npm 作为 node 的包管理器,你有想过全局安装的 node 包都放在 ...
- web安全之跨站脚本漏洞(XSS)
XSS(跨站脚本)概述以及pikachu上的实验操作 Cross-Site Scripting 简称为“CSS”,为避免与前端叠成样式表的缩写"CSS"冲突,故又称XSS. XSS ...
- MongoDB快速入门教程 (4.2)
4.2.Mongoose实现增删查改 中文文档地址: https://cn.mongoosedoc.top/docs/guide.html 4.2.1.Mongoose是什么? Mongoose是Mo ...
- LeetCode59. 螺旋矩阵 II
这题和第54题类似,都是套一个搜索的模板. 用dx和dy表示方向,方向的顺序是先向右,再向下,再向左,再向上,再向右... 如果"撞墙"了就需要改变到下一个方向."撞墙& ...
- Spring 获取单例流程(三)
读完这篇文章你将会收获到 Spring 何时将 bean 加入到第三级缓存和第一级缓存中 Spring 何时回调各种 Aware 接口.BeanPostProcessor .InitializingB ...
- 02-springboot整合elasticsearch初识
1.ReactiveElasticsearchOperations 根据springboot官网提供的Elasticsearch操作,除了用rest风格的,还有reactiveElasticS ...