题目:戳这里

题意:一个数字n不断迭代地除以自身的因子得到1。求这个过程中操作除法次数的期望。

解题思路:

求概率基本都是从一个最基础的状态开始延伸推出公式,得出答案。
因为每个数都有个共同的最终状态1,所以我们从1向n推(注意用到期望的可加性,可加性不需要事件相互独立
可以推出期望公式:
E=1/n * 1 + (n - 1)/n *(1 + E1 + ... + En)
Ei表示D除以一个除数后值为Di时,Di的期望。(第一道自己ac的该类型题目,记录一下

附ac代码:

 1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int maxn = 1e5 + 10;
5 const int inf = 0x3f3f3f3f;
6 const ll mod = 998244353;
7 double cnt[maxn];
8 double dp[maxn];
9 int main() {
10 int t, n;
11 dp[1] = 1.0;
12
13 for(int i = 1; i <= maxn; ++i)
14 {
15 if(cnt[i])
16 dp[i] /= cnt[i];
17 for(int j = 2; j * i <= maxn; ++j)
18 {
19 dp[i * j] += dp[i] + 1.0;
20 cnt[i * j] += 1.0;
21 }
22 }
23 scanf("%d", &t);
24 dp[1] = 0;
25 for(int cas = 1; cas <= t; ++cas)
26 {
27 scanf("%d", &n);
28 printf("Case %d: %f\n", cas, dp[n]);
29 }
30
31 return 0;
32 }

Lightoj 1038 - Race to 1 Again【期望+dp】的更多相关文章

  1. Lightoj 1038 - Race to 1 Again (概率DP)

    题目链接: Lightoj  1038 - Race to 1 Again 题目描述: 给出一个数D,每次可以选择数D的一个因子,用数D除上这个因子得到一个新的数D,为数D变为1的操作次数的期望为多少 ...

  2. LightOJ - 1038 Race to 1 Again —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1038 1038 - Race to 1 Again    PDF (English) Statistics Foru ...

  3. LightOJ 1038 Race to 1 Again (概率DP,记忆化搜索)

    题意:给定一个数 n,然后每次除以他的一个因数,如果除到1则结束,问期望是多少. 析:概率DP,可以用记忆公搜索来做,dp[i] = 1/m*sum(dp[j] + 1) + 1/m * (dp[i] ...

  4. LightOJ 1038 - Race to 1 Again(期望+DP)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1038 题意是:给你一个N (1 ≤ N ≤ 105) 每次N都随机选一个因子d,然后让 ...

  5. LightOJ 1038 Race to 1 Again(概率dp+期望)

    https://vjudge.net/problem/LightOJ-1038 题意:给出一个数n,每次选择n的一个约数m,n=n/m,直到n=1,求次数的期望. 思路:d[i]表示将i这个数变成1的 ...

  6. LightOJ - 1038 Race to 1 Again 递推+期望

    题目大意:给出一个数,要求你按一定的规则将这个数变成1 规则例如以下,如果该数为D,要求你在[1,D]之间选出D的因子.用D除上这个因子,然后继续按该规则运算.直到该数变成1 问变成1的期望步数是多少 ...

  7. lightoj 1038 Race to 1 Again

    题意:给一个数,用这个数的因数除以这个数,直到为1时,求除的次数的期望. 设一个数的约数有M个,E[n] = (E[a[1]]+1)/M+(E[a[2]]+1)/M+...+(E[a[M]]+1)/M ...

  8. LightOJ - 1287 Where to Run (期望dp+记忆化)

    题面: Last night you robbed a bank but couldn't escape and when you just got outside today, the police ...

  9. Race to 1 Again LightOJ - 1038

    Race to 1 Again LightOJ - 1038 题意:有一个数字D,每次把D变为它的一个因数(变到所有因数的概率相等,可能是本身),变到1后停止.求对于某个初始的D变到1的期望步数. x ...

随机推荐

  1. Pandas应用案例-股票分析:使用tushare包获取股票的历史行情数据进行数据分析

    目标: 使用tushare包获取股票的历史行情数据 输出该股票所有收盘比开盘上涨3%以上的日期 输出该股票所有开盘比前日收盘跌幅超过2%以上的日期 假如为我们从2010年1月1日开始,每月第一个交易日 ...

  2. LuoguP5488 差分与前缀和

    题意 给定一个长为\(n\)的序列\(a\),求出其\(k\)阶差分或前缀和.结果的每一项都需要对\(1004535809\)取模. 打表找规律 先看前缀和,设\(n=5\),\(k=4\),按照阶从 ...

  3. yml文件中${DB_HOST:localhost}的含义

    引自:https://blog.csdn.net/chen462488588/article/details/109057342 今天学习eladmin项目中看到application-dev.yml ...

  4. 【Android初级】使用TypeFace设置TextView的文字字体(附源码)

    在Android里面设置一个TextView的文字颜色和文字大小,都很简单,也是一个常用的基本功能.但很少有设置文字字体的,今天要分享的是通过TypeFace去设置TextView的文字字体,布局里面 ...

  5. MySQL调优性能监控之performance schema

    一.performance_schema的介绍 performance:性能 schema:图(表)示,以大纲或模型的形式表示计划或理论. MySQL的performance schema 用于监控M ...

  6. Bitter.Core系列九:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore 之 WITH 子句支持

    有时我们在聚合查询中,经常会有复杂的聚联查询.有时表的聚联查询SQL 子句比较复杂,DBA 会经常告诉们,能否通过WITH 子句优化.WITH 子句,是对SQL 聚联查询的优化.Bitter.Core ...

  7. (013)每日SQL学习:日期的各种计算

    1.确定两个日期之间的工作日天数 --确定两个日期之间的工作日天数with x0 as (select to_date('2018-01-01','yyyy-mm-dd') as 日期 from du ...

  8. 【题解】洛谷P3119 Grass Cownoisseur G

    题面:洛谷P3119 Grass Cownoisseur G 本人最近在熟悉Tarjan的题,刷了几道蓝题后,我飘了 趾高气扬地点开这道紫题,我一瞅: 哎呦!这不是分层图吗? 突然就更飘了~~~ 用时 ...

  9. 通过 JFR 与日志深入探索 JVM - TLAB 原理详解

    全系列目录:通过 JFR 与日志深入探索 JVM - 总览篇 什么是 TLAB? TLAB(Thread Local Allocation Buffer)线程本地分配缓存区,这是一个线程专用的内存分配 ...

  10. python2.7.5 +eric4.4.2+PyQt4-4.10.3

    1.安装python  双击运行就可以了 当安装好了Pyhon,记得要配置环境变量,把C:\Python27添加到PATH中 2.安装pyqt默认安装就可以 3.把eric4.4.2拷贝到C:\目录下 ...