介绍

本文主要介绍Python中函数的基本知识和使用

Python之什么是函数

我们知道圆的面积计算公式为:

S = πr²

当我们知道半径r的值时,就可以根据公式计算出面积。假设我们需要计算3个不同大小的圆的面积:

r1 = 12.34
r2 = 9.08
r3 = 73.1
s1 = 3.14 * r1 * r1
s2 = 3.14 * r2 * r2
s3 = 3.14 * r3 * r3

当代码出现有规律的重复的时候,你就需要当心了,每次写3.14 * x * x不仅很麻烦,而且,如果要把3.14改成3.14159265359的时候,得全部替换。

有了函数,我们就不再每次写s = 3.14 * x * x,而是写成更有意义的函数调用 s = area_of_circle(x),而函数 area_of_circle 本身只需要写一次,就可以多次调用。

抽象是数学中非常常见的概念。举个例子:

计算数列的和,比如:1 + 2 + 3 + ... + 100,写起来十分不方便,于是数学家发明了求和符号∑,可以把1 + 2 + 3 + ... + 100记作:

100
∑n
n=1

这种抽象记法非常强大,因为我们看到∑就可以理解成求和,而不是还原成低级的加法运算。

而且,这种抽象记法是可扩展的,比如:

100
∑(n²+1)
n=1

还原成加法运算就变成了:

(1 x 1 + 1) + (2 x 2 + 1) + (3 x 3 + 1) + ... + (100 x 100 + 1)

可见,借助抽象,我们才能不关心底层的具体计算过程,而直接在更高的层次上思考问题。

写计算机程序也是一样,函数就是最基本的一种代码抽象的方式。

Python不但能非常灵活地定义函数,而且本身内置了很多有用的函数,可以直接调用。

Python之调用函数

Python内置了很多有用的函数,我们可以直接调用。

要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数 abs,它接收一个参数。

可以直接从Python的官方网站查看文档:http://docs.python.org/2/library/functions.html#abs

也可以在交互式命令行通过 help(abs) 查看abs函数的帮助信息。

调用 abs 函数:

>>> abs(100)
100
>>> abs(-20)
20
>>> abs(12.34)
12.34

调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且Python会明确地告诉你:abs()有且仅有1个参数,但给出了两个:

>>> abs(1, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: abs() takes exactly one argument (2 given)

如果传入的参数数量是对的,但参数类型不能被函数所接受,也会报TypeError的错误,并且给出错误信息:str是错误的参数类型:

>>> abs('a')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'

而比较函数 cmp(x, y) 就需要两个参数,如果 x<y,返回 -1,如果 x==y,返回 0,如果 x>y,返回 1:

>>> cmp(1, 2)
-1
>>> cmp(2, 1)
1
>>> cmp(3, 3)
0

Python内置的常用函数还包括数据类型转换函数,比如 int()函数可以把其他数据类型转换为整数:

>>> int('123')
123
>>> int(12.34)
12

str()函数把其他类型转换成 str:

>>> str(123)
'123'
>>> str(1.23)
'1.23'

Python之编写函数

在Python中,定义一个函数要使用 def 语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用 return 语句返回。

我们以自定义一个求绝对值的 my_abs 函数为例:

def my_abs(x):
if x >= 0:
return x
else:
return -x

请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。

如果没有return语句,函数执行完毕后也会返回结果,只是结果为 None。

return None可以简写为return。

Python函数之返回多值

函数可以返回多个值吗?答案是肯定的。

比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的坐标:

math包提供了sin()和 cos()函数,我们先用import引用它

import math
def move(x, y, step, angle):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny

这样我们就可以同时获得返回值:

>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print x, y
151.961524227 70.0

但其实这只是一种假象,Python函数返回的仍然是单一值:

>>> r = move(100, 100, 60, math.pi / 6)
>>> print r
(151.96152422706632, 70.0)

用print打印返回结果,原来返回值是一个tuple!

但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便

Python之递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:

fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n

所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理。

于是,fact(n)用递归的方式写出来就是:

def fact(n):
if n==1:
return 1
return n * fact(n - 1)

上面就是一个递归函数。可以试试:

>>> fact(1)
1
>>> fact(5)
120
>>> fact(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000L

如果我们计算fact(5),可以根据函数定义看到计算过程如下:

===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试计算 fact(10000)。

注:测试题可以再研究一下

Python之定义默认参数

定义函数的时候,还可以有默认参数。

例如Python自带的 int() 函数,其实就有两个参数,我们既可以传一个参数,又可以传两个参数:

>>> int('123')
123
>>> int('123', 8)
83

int()函数的第二个参数是转换进制,如果不传,默认是十进制 (base=10),如果传了,就用传入的参数。

可见,函数的默认参数的作用是简化调用,你只需要把必须的参数传进去。但是在需要的时候,又可以传入额外的参数来覆盖默认参数值。

我们来定义一个计算 x 的N次方的函数:

def power(x, n):
s = 1
while n > 0:
n = n - 1
s = s * x
return s

假设计算平方的次数最多,我们就可以把 n 的默认值设定为 2:

def power(x, n=2):
s = 1
while n > 0:
n = n - 1
s = s * x
return s

这样一来,计算平方就不需要传入两个参数了:

>>> power(5)
25

由于函数的参数按从左到右的顺序匹配,所以默认参数只能定义在必需参数的后面

# OK:
def fn1(a, b=1, c=2):
pass
# Error:
def fn2(a=1, b):
pass

Python之定义可变参数

如果想让一个函数能接受任意个参数,我们就可以定义一个可变参数:

def fn(*args):
print args

可变参数的名字前面有个 * 号,我们可以传入0个、1个或多个参数给可变参数:

>>> fn()
()
>>> fn('a')
('a',)
>>> fn('a', 'b')
('a', 'b')
>>> fn('a', 'b', 'c')
('a', 'b', 'c')

可变参数也不是很神秘,Python解释器会把传入的一组参数组装成一个tuple传递给可变参数,因此,在函数内部,直接把变量 args 看成一个 tuple 就好了。

定义可变参数的目的也是为了简化调用。假设我们要计算任意个数的平均值,就可以定义一个可变参数:

def average(*args):
...

这样,在调用的时候,可以这样写:

>>> average()
0
>>> average(1, 2)
1.5
>>> average(1, 2, 2, 3, 4)
2.4

结语

欢迎关注微信公众号『码仔zonE』,专注于分享Java、云计算相关内容,包括SpringBoot、SpringCloud、微服务、Docker、Kubernetes、Python等领域相关技术干货,期待与您相遇!

Python开发的入门教程(六)-函数的更多相关文章

  1. Python开发的入门教程(一)-数据类型、变量

    介绍 Python第一门课程,是Python开发的入门教程,将介绍Python语言的特点和适用范围,Python基本的数据类型,条件判断和循环,函数,以及Python特有的切片和列表生成式. Pyth ...

  2. Python开发的入门教程(七)-切片

    介绍 本文主要介绍Python中切片的基本知识和使用 对list进行切片 取一个list的部分元素是非常常见的操作.比如,一个list如下: >>> L = ['Adam', 'Li ...

  3. Python开发的入门教程(四)-dict

    介绍 本文主要介绍Python中dict的基本知识和使用. Python之什么是dict 我们已经知道,list 和 tuple 可以用来表示顺序集合,例如,班里同学的名字: ['Adam', 'Li ...

  4. Python开发的入门教程(八)-迭代

    介绍 本文主要介绍Python中迭代的基本知识和使用 什么是迭代 在Python中,如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们成为迭代(Ite ...

  5. Python开发的入门教程(二)-List和Tuple类型

    介绍 本文主要介绍Python中List和Tuple类型的基本知识和使用. Python创建list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的 ...

  6. Python开发的入门教程(五)-set

    介绍 本文主要介绍Python中set的基本知识和使用. Python中什么是set dict的作用是建立一组 key 和一组 value 的映射关系,dict的key是不能重复的. 有的时候,我们只 ...

  7. Python开发的入门教程(九)-列表生成式

    介绍 本文主要介绍Python中列表生成式的基本知识和使用 生成列表 要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],我们可以用range(1, 11): >&g ...

  8. PySide——Python图形化界面入门教程(六)

    PySide——Python图形化界面入门教程(六) ——QListView和QStandardItemModel 翻译自:http://pythoncentral.io/pyside-pyqt-tu ...

  9. 无废话ExtJs 入门教程六[按钮:Button]

    无废话ExtJs 入门教程六[按钮:Button] extjs技术交流,欢迎加群(201926085) 继上一节内容,我们在表单里加了个两个按钮“提交”与重置.如下所示代码区的第68行位置, butt ...

随机推荐

  1. Python编程入门(第3版) PDF|百度网盘下载内附提取码

    Python编程入门(第3版)是图文并茂的Python学习参考书,书中并不包含深奥的理论或者高级应用,而是以大量来自实战的例子.屏幕图和详细的解释,用通俗易懂的语言结合常见任务,对Python的各项基 ...

  2. 7.29 NOI模拟赛 题答 npc问题 三染色 随机 贪心

    LINK:03colors 这道题虽然绝大多数的人都获得了满分 可是我却没有. 老师讲题的时候讲到了做题答的几个技巧 这里总结一下. 数据强度大概为n=5000,m=60000的随机数据. 老师说:一 ...

  3. 8月1日起全部无版号游戏下架,ios手游想上架看这里!

      在苹果至中国游戏开发者的邮件中声明:如果开发者不能在7月31日前提交版号及相关文件,付费游戏将不可以在中国AppStore供应.也就是说:   从8月1日开始,苹果将正式下架全部.所有的ios付费 ...

  4. .NET Core 微服务—API网关(Ocelot) 教程 [三]

    前言: 前一篇文章<.NET Core 微服务—API网关(Ocelot) 教程 [二]>已经让Ocelot和目录api(Api.Catalog).订单api(Api.Ordering)通 ...

  5. 获取客户端用户真实ip方法整理(jekyll迁移)

    layout: post title: 获取客户端用户真实ip方法整理 date: 2019-08-22 author: xiepl1997 tags: springboot 由请求获取客户端ip地址 ...

  6. JMeter软件测试工具介绍及基本安装教程

    一.工具介绍 (一)简介 Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试领域. 它可以用于测试 ...

  7. do...while循环语句(水仙花)

    #define _CRT_SECURE_NO_WARNINGS#include<stdio.h>#include<string.h>#include<stdlib.h&g ...

  8. 题解 洛谷P3469

    题目每个割点去掉后会导致多少对点不能连通 考虑跑Tarjan的时候记录每个儿子的size,那么去掉这个割点后其他的点都不能和这个儿子连通 注意每个点去掉后它本身就不能与其他所有点连通 还有就是题目里求 ...

  9. 第一章 Kubernetes入门

    第一章 Kubernetes入门 kubernetes是基于容器技术的分布式架构领先方案,是一个完备的分布式系统支撑平台. kubernetes带来的好处:1)全面拥抱微服务:2)统可以随时随地整体“ ...

  10. 微服务技术栈:API网关中心,落地实现方案

    本文源码:GitHub·点这里 || GitEE·点这里 一.服务网关简介 1.外观模式 客户端与各个业务子系统的通信必须通过一个统一的外观对象进行,外观模式提供一个高层次的接口,使得子系统更易于使用 ...