4.15 省选模拟赛 编码 trie树 前缀和优化建图 2-sat
好题 np.
对于20分 显然可以爆搜。
对于50分 可以发现每个字符串上的问号要么是0,要么是1.考虑枚举一个字符串当前是0还是1 这会和其他字符串产生矛盾。
所以容易 发现这是一个2-sat问题。
拆点 把任意两个产生矛盾的字符串进行连边。然后最后判矛盾即可。
n^2枚举 建图 判断矛盾时使用字符串hash 要分类讨论4种情况。
using namespace std;
const int MAXN=1010,maxn=500010,cc1=19260817,cc2=114514;
int n,mark,cnt,top,id,len;
string a[MAXN];
int flag[MAXN],c[MAXN<<1],low[MAXN<<1],dfn[MAXN<<1],s[MAXN<<1];
int lin[MAXN<<1],ver[MAXN*MAXN<<2],nex[MAXN*MAXN<<2],w[MAXN];
vector<int>h0[MAXN];//表示为0时的前缀hash值 或者表示什么都不是的前缀hash值.
vector<int>h1[MAXN];//表示为1时的前缀hash值
struct wy
{
int len,id;
}t[MAXN];
inline int cmp(wy a,wy b){return a.len<b.len;}
inline void dfs(int x)
{
low[x]=dfn[x]=++cnt;
s[++top]=x;
go(x)
{
if(!dfn[tn])
{
dfs(tn);
low[x]=min(low[x],low[tn]);
}
else if(!c[tn])low[x]=min(low[x],dfn[tn]);
}
if(dfn[x]==low[x])
{
int y=0;++id;
while(y!=x)
{
y=s[top--];
c[y]=id;
}
}
}
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
int main()
{
freopen("code.in","r",stdin);
freopen("code.out","w",stdout);
ios::sync_with_stdio(false);
cin>>n;
if(n<=1000)
{
rep(1,n,i)
{
cin>>a[i];
t[i]=(wy){a[i].size(),i};
}
rep(1,n,i)
{
ll w0=0,w1=0;
rep(0,((int)a[i].size())-1,j)
{
w0=w0*P%mod;
w1=w1*P%mod;
if(a[i][j]=='?')
{
flag[i]=j+1;
w0=(w0+cc1)%mod;
w1=(w1+cc2)%mod;
}
else
{
if(a[i][j]=='0')w1=(w1+cc1)%mod,w0=(w0+cc1)%mod;
else w1=(w1+cc2)%mod,w0=(w0+cc2)%mod;
}
h0[i].pb(w0);
h1[i].pb(w1);
}
}
//x表示这个点选择0 x+n表示这个点选择1.
sort(t+1,t+1+n,cmp);
rep(1,n,i)
{
int x=t[i].id;//x.len<=y.len
int xx=t[i].len;
rep(i+1,n,j)
{
int y=t[j].id;
if(!flag[x]&&(!flag[y]||flag[y]>xx))
{
if(h0[x][xx-1]==h0[y][xx-1])
{
puts("NO");
return 0;
}
continue;
}
if(!flag[x]&&flag[y]<=xx)
{
if(h0[x][xx-1]==h0[y][xx-1])add(y,y+n);
if(h0[x][xx-1]==h1[y][xx-1])add(y+n,y);
continue;
}
if(flag[x]&&(!flag[y]||flag[y]>xx))
{
if(h0[x][xx-1]==h0[y][xx-1])add(x,x+n);
if(h1[x][xx-1]==h0[y][xx-1])add(x+n,x);
}
if(flag[x]&&flag[y]<=xx)
{
if(h0[x][xx-1]==h0[y][xx-1])add(x,y+n),add(y,x+n);
if(h0[x][xx-1]==h1[y][xx-1])add(x,y),add(y+n,x+n);
if(h1[x][xx-1]==h0[y][xx-1])add(x+n,y+n),add(y,x);
if(h1[x][xx-1]==h1[y][xx-1])add(x+n,y),add(y+n,x);
}
}
}
rep(1,n+n,i)if(!dfn[i])dfs(i);
rep(1,n,i)if(c[i]==c[i+n]){puts("NO");return 0;}
puts("YES");
}
return 0;
}
考虑100分。
我考试的时候想了一波trie树 但是当时思考没有在这个暴力的基础上思考 所以 建图也很麻烦 所以弃疗了。
可以发现我们拆过点后 把这些串给放到trie树上。
可以发现连边的时候 使用前缀和连边 即可优化建图了。
对于某个节点存放多个节点 这个时候 对这个节点内部再进行一次前缀和优化建图。
对于某个节点不存在? 考虑子树内和链上上的节点都需要自己向自己的对立连边 这个使用懒标记即可。
上传标记和 标记的时候注意判断不合法的情况。
这个优化建图还是很精髓的。充分的利用了trie树的性质。
注意空间不要开小了 计算不了点数可以开到空间上界小一点。
const int MAXN=500010*3;
int n,sum,cnt=1,top,id,len,last=1,mark;
string a[MAXN];
int t[MAXN][2],ne[MAXN],pos[MAXN];
int flag[MAXN],c[MAXN<<3],low[MAXN<<3],dfn[MAXN<<3],s[MAXN<<3],w1[MAXN],w2[MAXN];
int lin[MAXN<<3],ver[MAXN<<3],nex[MAXN<<3],add1[MAXN],add2[MAXN];
vector<int>g[MAXN];
inline void dfs(int x)
{
low[x]=dfn[x]=++cnt;
s[++top]=x;
go(x)
{
if(!dfn[tn])
{
dfs(tn);
low[x]=min(low[x],low[tn]);
}
else if(!c[tn])low[x]=min(low[x],dfn[tn]);
}
if(dfn[x]==low[x])
{
int y=0;++id;
while(y!=x)
{
y=s[top--];
c[y]=id;
}
}
}
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline void insert(int x,int op)
{
int p=1,c=min(x,ne[x]);
for(ui i=0;i<a[c].size();++i)
{
int w=a[c][i]-'0';
if(!t[p][w])t[p][w]=++cnt;
p=t[p][w];
}
if(op)g[p].pb(x);
else
{
if(add1[p])mark=1;
add1[p]=1,add2[p]=1;
}
pos[x]=p;
}
inline void dfs(int x,int fa)
{
int s1=++sum,s2=++sum;
if(w1[fa])add(s1,w1[fa]);//w1[x]表示当前点向前缀所有的点的相反点的连边
if(w2[fa])add(w2[fa],s2);//w2[x]表示前缀所有的点向当前点的连边.
int c1=++sum,c2=++sum,cc1,cc2;//c1表示当前这个点对前缀和的相反点的连边.
//c2表示前缀和的所有点对当前点的连边.
for(ui i=0;i<g[x].size();++i)
{
int tn=g[x][i];
//cout<<tn<<endl;
add(tn,c1);
cc1=++sum;
add(cc1,c1);
add(cc1,ne[tn]);
c1=cc1;
add(c2,ne[tn]);
cc2=++sum;
add(c2,cc2);
add(tn,cc2);
c2=cc2;
if(w1[fa])add(tn,w1[fa]);
if(w2[fa])add(w2[fa],ne[tn]);
add(s1,ne[tn]);
add(tn,s2);
}
//puts("ww");
w1[x]=s1;w2[x]=s2;
if(t[x][0])add1[t[x][0]]|=add1[x],dfs(t[x][0],x);//传递子树标记
if(t[x][1])add1[t[x][1]]|=add1[x],dfs(t[x][1],x);
if(add2[x]&&add2[t[x][0]])mark=1;
if(add2[x]&&add2[t[x][1]])mark=1;
add2[x]|=add2[t[x][0]];//传递链上标记.
add2[x]|=add2[t[x][1]];
}
int main()
{
freopen("code.in","r",stdin);
freopen("code.out","w",stdout);
ios::sync_with_stdio(false);
cin>>n;//cout<<1<<endl;
rep(1,n,i)cin>>a[i];
rep(1,n,i)
{
ne[i]=i+n;ne[i+n]=i;
for(ui j=0;j<a[i].size();++j)if(a[i][j]=='?'){flag[i]=j+1;break;}
if(flag[i])
{
a[i][flag[i]-1]='0';
insert(i,1);
a[i][flag[i]-1]='1';
insert(i+n,1);
}
else insert(i,0);
}
sum=2*n;dfs(1,0);
if(mark){puts("NO");return 0;}
rep(1,2*n,i)if(add1[pos[i]]||add2[pos[i]])if(pos[i])add(i,ne[i]);
rep(1,2*n,i)if(!dfn[i])dfs(i);
rep(1,n,i)if(c[i]==c[i+n]){puts("NO");return 0;}
puts("YES");
return 0;
}
4.15 省选模拟赛 编码 trie树 前缀和优化建图 2-sat的更多相关文章
- 5.15 省选模拟赛 容斥 生成函数 dp
LINK:5.15 T2 个人感觉生成函数更无脑 容斥也好推的样子. 容易想到每次放数和数字的集合无关 所以得到一个dp f[i][j]表示前i个数字 逆序对为j的方案数. 容易得到转移 使用前缀和优 ...
- 6.15 省选模拟赛 老魔杖 博弈论 SG函数
这道题确实没有一个很好的解决办法 唯一的正解可能就是打表找规律 或者 直接猜结论了吧. 尽管如此 在此也给最终结论一个完整的证明. 对于70分 容易发现状态数量不大 可以进行暴力dp求SG函数. 原本 ...
- 5.15 省选模拟赛 T1 点分治 FFT
LINK:5.15 T1 对于60分的暴力 都很水 就不一一赘述了. 由于是询问所有点的这种信息 确实不太会. 想了一下 如果只是询问子树内的话 dsu on tree还是可以做的. 可以自己思考一下 ...
- 5.4 省选模拟赛 修改 线段树优化dp 线段树上二分
LINK:修改 题面就不放了 大致说一下做法.不愧是dls出的题 以前没见过这种类型的 不过还是自己dp的时候写丑了. 从这道题中得到一个结论 dp方程要写的优美一点 不过写的过丑 优化都优化不了. ...
- 4.9 省选模拟赛 圆圈游戏 树形dp set优化建图
由于圆不存在相交的关系 所以包容关系形成了树的形态 其实是一个森林 不过加一个0点 就变成了树. 考虑对于每个圆都求出最近的包容它的点 即他的父亲.然后树形dp即可.暴力建图n^2. const in ...
- 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解
今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...
- 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)
题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...
- 内存空间有限情况下的词频统计 Trie树 前缀树
数据结构与算法专题--第十二题 Trie树 https://mp.weixin.qq.com/s/nndr2AcECuUatXrxd3MgCg
- 4.24 省选模拟赛 欧珀瑞特 主席树 可持久化trie树
很容易的一道题目.大概.不过我空间计算失误MLE了 我草草的计算了一下没想到GG了. 关键的是 我学了一个dalao的空间回收的方法 但是弄巧成拙了. 题目没有明确指出 在任意时刻数组长度为有限制什么 ...
随机推荐
- css常用的简写技巧_css background简写、css border 简写、css font属性简写等
css样式中有很多简写方式,比如:设置背景,字体,边框,盒子等.我们都可以把css代码合并为一行,这篇文章将总结有哪些属性支持css简写. 1.背景background属性 background-co ...
- When Lambo with Howdoo
原文链接:https://howdoo.io/when-lambo/ 为了庆祝即将推出的革命性新社交媒体平台Howdoo以及我们令人惊喜的合作伙伴关系和社区,我们正在发起一项竞赛,以最终回答“When ...
- Mysql 常用语句实战(1)
前置 sql 语句 用来创建表.插入数据 DROP TABLE IF EXISTS `emp`; CREATE TABLE `emp` ( `id` int(11) NOT NULL COMMENT ...
- nuxt的使用中碰到的问题
使用npm run generate生成静态页面部署 如果不是部署在域名的根目录下,则需要在nuxt.config.js中添加 // nuxt.config.js export default { r ...
- classpath路径(转)
src不是classpath, WEB-INF/classes,lib才是classpathWEB-INF/ 是资源目录, 客户端不能直接访问, 这话是没错,不过现在的IDE编译器在编译时会把src下 ...
- 数据可视化之powerBI基础(八)PowerBI的表格,你真的会用吗
https://zhuanlan.zhihu.com/p/64413000 在PowerBI的可视化对象中,还有两个「表格」对象,表格的作用不仅可以在报表提供明细数据,还经常用来测试度量值的返回结果, ...
- Flask 基础组件(四):模板
1.模板的使用 1.1 语法 1.1.1 流程控制 逻辑语法 Jinja2模板语言中的 for {% for foo in g %} {% endfor %} Jinja2模板语言中的 if {% ...
- 【五学x红小豆xRS】两边三地大联动-句型
<第五共和国> Tohara LY Sara'm, Sabang Chua Setuk KS Kareh Moh Induree Junchi Chueh? 阁下!和这样的虫豸在一起,怎么 ...
- 使用 JS 开发 Github Actions 实现自动部署前后台项目到自己服务器
不想看前面这么多废话的可以直接跳到具体实现 Github Actions 是什么? 说到 Github Actions 不得不提一下. 持续集成(continuous integration):高质量 ...
- Ethical Hacking - GAINING ACCESS(22)
CLIENT SIDE ATTACKS - BeEf Framework Browser Exploitation Framework allowing us to launch a number o ...