GCN 入门
参考链接: https://www.zhihu.com/question/54504471/answer/611222866
1 拉普拉斯矩阵
- 参考链接: http://bbs.cvmart.net/articles/281/cong-cnn-dao-gcn-de-lian-xi-yu-qu-bie-gcn-cong-ru-men-dao-jing-fang-tong-qi
- L = D - A, A 为图的邻接矩阵, D 为顶点度的对角矩阵, L 为 拉普拉斯矩阵
1.1 拉普拉斯矩阵的类别
3 图卷积的参数
- 参考链接: http://bbs.cvmart.net/articles/281/cong-cnn-dao-gcn-de-lian-xi-yu-qu-bie-gcn-cong-ru-men-dao-jing-fang-tong-qi
- 由 1 小节得知, 图卷积的公式, 图卷积训练的参数在公式中对角矩阵中, GCN 的训练有两个版本, 第一版思维简单但是因为其缺点已经不再使用, 现在大都使用第二个版本
3.1 第一代图卷积训练
- 直接将对角矩阵中对角上的值当做参数
- 表示激活函数
- 表示输入向量
- 优点
- 发现中间的除去 的公式为拉普拉斯矩阵的分解公式, 那么在运算中不再需要分解公式, 直接使用拉普拉斯矩阵即可, 减少了计算量
- 参数少
3.2 第二代图卷积训练
- 将 转为了 , 其中为任意参数, 需要进行随机初始化, 即边的权重
- 借助 U 和拉普拉斯矩阵的特征进行化简, 得到
- L 表示拉普拉斯矩阵
- K 表示顶点的阶数, 顶点的邻居节点
- x 表示输入的特征, 为了形象的理解, 以一张灰度图为例
- 图的结构即图像的方格排列, 不需要人为的设计, 因为图片的形状就是如此, 每一个方格是图的一个顶点
- 像素值即每一个顶点的特征, 只不过在一般的图结构中, 顶点的值为一个特征向量
- 表示边的权重, 也是网络需要训练并且优化的参数
3.3 图解图卷积
- GCN每一次卷积对所有的顶点都完成了图示的操作
4 GCN 分类的效果
- 图结构如下
- 输入 PageID, IP, UA, DeviceID, UserID, 通过卷积, 得到中间节点的特征, 也就是分类的结果
- 与比较 GBDT 相比, 效果更好
5 图卷积网络的拓扑结构
- 参考链接: https://mp.weixin.qq.com/s/356WvVn1Tz0axsKd8LJW4Q
- 拓扑结构
- 和 CNN 类似, 每一层都是叠加堆积在一起的, 经过卷积得到的结果, 通过激活函数(ReLU, Sigmoid等)传到下一层
- 不是每一个顶点都要进行卷积重新计算新的特征, 而是选择靠近中心的顶点
- 在上图中, 表示的不是图的结构, 也不是边所代表的的权重, 而是每一个顶点对应的特征向量, 在图片中, 每一个顶点对应的是一个标量, 即像素值
- 在3 图卷积的参数中提到了图卷积的参数与公式, 第二代的图卷积公式在运用的时候回转变成一个更清晰的表示公式
- 表示标准化系数
- H 表示上一层每一个顶点的特征向量, 维度为 NxF, N 表示顶点个数, F 表示特征向量的维度
- W 表示边权重
- 公式的定性理解
- 选定一个顶点 V, 确定邻域, 如果个数不到邻域个数, 则补充哑顶点, 如果超过, 则删除对于的顶点
- 获取邻域中顶点的特征向量, 将其余顶点 V 的边(权重)相乘再相加, 得到新的维度的特征向量
- 防止较大的尺度变化, 将得到的结果进行标准化
- 图卷积的特点
GCN 入门的更多相关文章
- 图卷积神经网络(GCN)入门
图卷积网络Graph Convolutional Nueral Network,简称GCN,最近两年大热,取得不少进展.不得不专门为GCN开一个新篇章,表示其重要程度.本文结合大量参考文献,从理论到实 ...
- GCN入门理解
图是信息的最佳表示方式.在一个图中,有通过边(谓之“关系”)连接起来的节点(谓之“实体”).想一想,你的Facebook社交网络是个什么样子的:以你为中心连接上你的朋友们,他们又以不同的方式相互联系. ...
- 【GCN】图卷积网络初探——基于图(Graph)的傅里叶变换和卷积
[GCN]图卷积网络初探——基于图(Graph)的傅里叶变换和卷积 2018年11月29日 11:50:38 夏至夏至520 阅读数 5980更多 分类专栏: # MachineLearning ...
- 图神经网络 PyTorch Geometric 入门教程
简介 Graph Neural Networks 简称 GNN,称为图神经网络,是深度学习中近年来一个比较受关注的领域.近年来 GNN 在学术界受到的关注越来越多,与之相关的论文数量呈上升趋势,GNN ...
- 最全面的图卷积网络GCN的理解和详细推导,都在这里了!
目录 目录 1. 为什么会出现图卷积神经网络? 2. 图卷积网络的两种理解方式 2.1 vertex domain(spatial domain):顶点域(空间域) 2.2 spectral doma ...
- Angular2入门系列教程7-HTTP(一)-使用Angular2自带的http进行网络请求
上一篇:Angular2入门系列教程6-路由(二)-使用多层级路由并在在路由中传递复杂参数 感觉这篇不是很好写,因为涉及到网络请求,如果采用真实的网络请求,这个例子大家拿到手估计还要自己写一个web ...
- ABP入门系列(1)——学习Abp框架之实操演练
作为.Net工地搬砖长工一名,一直致力于挖坑(Bug)填坑(Debug),但技术却不见长进.也曾热情于新技术的学习,憧憬过成为技术大拿.从前端到后端,从bootstrap到javascript,从py ...
- Oracle分析函数入门
一.Oracle分析函数入门 分析函数是什么?分析函数是Oracle专门用于解决复杂报表统计需求的功能强大的函数,它可以在数据中进行分组然后计算基于组的某种统计值,并且每一组的每一行都可以返回一个统计 ...
- Angular2入门系列教程6-路由(二)-使用多层级路由并在在路由中传递复杂参数
上一篇:Angular2入门系列教程5-路由(一)-使用简单的路由并在在路由中传递参数 之前介绍了简单的路由以及传参,这篇文章我们将要学习复杂一些的路由以及传递其他附加参数.一个好的路由系统可以使我们 ...
随机推荐
- bzoj3196Tyvj1730二逼平衡树
bzoj3196Tyvj1730二逼平衡树 题意: 维护一个数列,操作:查询k在区间内的排名.查询区间内排名为k的值3.修改某一位上的数值.查询k在区间内的前驱(前驱定义为小于x,且最大的数).查询k ...
- 【RPA Starter第三课】第一个Uipath项目:HelloWord
最后是一个小项目,开启使用Uipath.Uipath云平台,Uipath Orchestrator,Uipath Studio,发布项目.怎么启动机器人.都有详细的步骤. Uipath 的账号是通用的 ...
- OpenXml demo
class OpenXmlDemo { /* * excel 对象结构 * SpreadsheetDocument * >WorkbookPart * >WorksheetPart * & ...
- jmeter 及测试(转载)
负载测试:在一定的工作负荷下,给系统造成的负荷及系统响应的时间. 压力测试:在一定的负荷条件下,长时间连续运行系统给系统性能造成的影响. 1.性能测试(Performance Test):通常收集 ...
- Springboot启动扩展点超详细总结,再也不怕面试官问了
1.背景 Spring的核心思想就是容器,当容器refresh的时候,外部看上去风平浪静,其实内部则是一片惊涛骇浪,汪洋一片.Springboot更是封装了Spring,遵循约定大于配置,加上自动装配 ...
- 记IntelliJ IDEA创建spring mvc一次坑爹的操作!!!!
本人刚开始学习spring mvc,遇到一问题,现在分享一下. 点击Next,创建项目完成,你会发现缺少很多东西. lib文件没有,里面的jar更没有.applicationContext.xml和d ...
- 使用ImpromptuInterface反射库方便的创建自定义DfaGraphWriter
在本文中,我为创建的自定义的DfaGraphWriter实现奠定了基础.DfaGraphWriter是公开的,因此您可以如上一篇文章中所示在应用程序中使用它,但它使用的所有类均已标记为internal ...
- C++与正则表达式入门
什么是正则表达式? 正则表达式是一组由字母和符号组成的特殊文本, 当你想要判断许多字符串是否符合某个特定格式:当你想在一大段文本中查找出所有的日期和时间:当你想要修改大量日志中所有的时间格式,在这些情 ...
- Python对列表去重的各种方法
一.循环去重 二.用 set() 去重 1.set()对list去重 2.list 是有序的,用 sort() 把顺序改回来 三.利用 dict 的属性来去重 1.用 dict 的 fromke ...
- redis 之 持久化
Redis支持RDB和AOF两种持久化机制,持久化功能有效地避免因进程退出造成的数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复. 1.RDB持久化 RDB持久化是指在指定的时间间隔内将 ...