1、基础
  自己对于YOLOV1,2,3都比较熟悉。 RCNN也比较熟悉。这个是自己目前掌握的基础
2、第一步
  看一下2019年的井喷的anchor free的网络
3、第二步
  看一下以往,引用多的网路
4、第三步
  看一下,2020最新的,但是在pwcode上面排名靠前的网络

2020优秀论文:
EfficientDet: Scalable and Efficient Object Detection,57
DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution
Rethinking Pre-training and Self-training
Revisiting the Sibling Head in Object Detector
Deep High-Resolution Representation Learning for Visual Recognition*52
HoughNet: Integrating near and long-range evidence for bottom-up object detection ??
M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network,101

优秀论文:
Acquisition of Localization Confidence for Accurate Object Detection,182
Scale-Aware Trident Networks for Object Detection,141
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond,107
Path Aggregation Network for Instance Segmentation,400
Hybrid Task Cascade for Instance Segmentation ,139
SNIPER: Efficient Multi-Scale Training,141
Deformable ConvNets v2: More Deformable, Better Results,188
An Analysis of Scale Invariance in Object Detection - SNIP,218
Single-Shot Refinement Neural Network for Object Detection,414
Attention Augmented Convolutional Networks,58
SaccadeNet: A Fast and Accurate Object Detector

two stage:
Grid R-CNN, plus,46
Cascade R-CNN: Delving into High Quality Object Detection,571
Libra R-CNN: Towards Balanced Learning for Object Detection,115
Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training

one stage:
ExtremNet :Bottom-up Object Detection by Grouping Extreme and Center Points 2019,129
YoLOV5
YOLOv4: Optimal Speed and Accuracy of Object Detection*,17

anchor free的网络:
Scale-Equalizing Pyramid Convolution for Object Detection,2020
FoveaBox: Beyond Anchor-based Object Detector 2019,52
CornerNet: Detecting Objects as Paired Keypoints 2018 ,445
CornerNet-Lite (2019) (https://arxiv.org/abs/1904.08900)
CenterNet: Keypoint Triplets for Object Detection 2019,129
FCOS: Fully Convolutional One-Stage Object Detection 2019,206
Feature Selective Anchor-Free Module for Single-Shot Object Detection,144

object detection 总结的更多相关文章

  1. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  2. 论文阅读(Chenyi Chen——【ACCV2016】R-CNN for Small Object Detection)

    Chenyi Chen--[ACCV2016]R-CNN for Small Object Detection 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 总结与收获点 参考文献 ...

  3. deep learning on object detection

    回归工作一周,忙的头晕,看了两三篇文章,主要在写各种文档和走各种办事流程了-- 这次来写写object detection最近看的三篇文章吧.都不是最近的文章,但是是今年的文章,我也想借此让自己赶快熟 ...

  4. 论文阅读之 DECOLOR: Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation

    DECOLOR: Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation Xia ...

  5. 目标检测--Rich feature hierarchies for accurate object detection and semantic segmentation(CVPR 2014)

    Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick J ...

  6. object detection技术演进:RCNN、Fast RCNN、Faster RCNN

    object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...

  7. TensorFlow Object Detection API(Windows下测试)

    "Speed/accuracy trade-offs for modern convolutional object detectors." Huang J, Rathod V, ...

  8. Object Detection · RCNN论文解读

    转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object D ...

  9. 使用TensorFlow Object Detection API+Google ML Engine训练自己的手掌识别器

    上次使用Google ML Engine跑了一下TensorFlow Object Detection API中的Quick Start(http://www.cnblogs.com/take-fet ...

  10. Object Detection︱RCNN、faster-RCNN框架的浅读与延伸内容笔记

    一.RCNN,fast-RCNN.faster-RCNN进化史 本节由CDA深度学习课堂,唐宇迪老师教课,非常感谢唐老师课程中的论文解读,很有帮助. . 1.Selective search 如何寻找 ...

随机推荐

  1. js 自定义阻止事件冒泡函数

    // 以下改方法全兼容Chrome function stopBubble(event){ if(event.stopPropagation){   // 兼容火狐(firebox) event.st ...

  2. oracle终止用户会话

    1.创建两个测试用户进行实验 执行命令如下: create user test1 identified by 1; create user test2 identified by 1; grant d ...

  3. Ethical Hacking - Web Penetration Testing(3)

    EXPLOITATION -File Upload VULNS Simple type of vulnerabilities. Allow users to upload executable fil ...

  4. Python Ethical Hacking - Malware Packaging(1)

    PACKAGING Convert python program into an executable that: Packages all program files into a single e ...

  5. 用c#自己实现一个简单的JSON解析器

    一.JSON格式介绍 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.相对于另一种数据交换格式 XML,JSON 有着很多优点.例如易读性更好,占用空间更 ...

  6. 17 个 Python 特别实用的操作技巧,记得收藏!

    Python 是一门非常优美的语言,其简洁易用令人不得不感概人生苦短.在本文中,作者 Gautham Santhosh 带我们回顾了 17 个非常有用的 Python 技巧,例如查找.分割和合并列表等 ...

  7. [日常摘要] -- ThreadLocal篇

    简介 ThreadLocal,即线程变量,是一个以ThreadLocal对象为键.任意对象为值的存储结构.这个结构被附带在线程上,也就是说一个线程可以根据一个ThreadLocal对象查询到绑定在这个 ...

  8. [jvm] -- 引用篇

    四种引用及其应用场景 强引用 强引用是平常中使用最多的引用,强引用在程序内存不足(OOM)的时候也不会被回收. 使用场景:啥时候都在使用 软引用 软引用在程序内存不足时,会被回收. 使用场景:创建缓存 ...

  9. webserver 返回json 如何去掉 <string xmlns="http://tempuri.org/">

    [WebMethod]  public void GetJson(String sJson)  {    Context.Response.Charset = "UTF-8"; / ...

  10. socket网络(二)

    作用域 python/js语言中,无块级作用域 if 1 == 1: name = 'alex' print(name) python中以函数为作用域 def func(): name = 'alex ...