1、基础
  自己对于YOLOV1,2,3都比较熟悉。 RCNN也比较熟悉。这个是自己目前掌握的基础
2、第一步
  看一下2019年的井喷的anchor free的网络
3、第二步
  看一下以往,引用多的网路
4、第三步
  看一下,2020最新的,但是在pwcode上面排名靠前的网络

2020优秀论文:
EfficientDet: Scalable and Efficient Object Detection,57
DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution
Rethinking Pre-training and Self-training
Revisiting the Sibling Head in Object Detector
Deep High-Resolution Representation Learning for Visual Recognition*52
HoughNet: Integrating near and long-range evidence for bottom-up object detection ??
M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network,101

优秀论文:
Acquisition of Localization Confidence for Accurate Object Detection,182
Scale-Aware Trident Networks for Object Detection,141
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond,107
Path Aggregation Network for Instance Segmentation,400
Hybrid Task Cascade for Instance Segmentation ,139
SNIPER: Efficient Multi-Scale Training,141
Deformable ConvNets v2: More Deformable, Better Results,188
An Analysis of Scale Invariance in Object Detection - SNIP,218
Single-Shot Refinement Neural Network for Object Detection,414
Attention Augmented Convolutional Networks,58
SaccadeNet: A Fast and Accurate Object Detector

two stage:
Grid R-CNN, plus,46
Cascade R-CNN: Delving into High Quality Object Detection,571
Libra R-CNN: Towards Balanced Learning for Object Detection,115
Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training

one stage:
ExtremNet :Bottom-up Object Detection by Grouping Extreme and Center Points 2019,129
YoLOV5
YOLOv4: Optimal Speed and Accuracy of Object Detection*,17

anchor free的网络:
Scale-Equalizing Pyramid Convolution for Object Detection,2020
FoveaBox: Beyond Anchor-based Object Detector 2019,52
CornerNet: Detecting Objects as Paired Keypoints 2018 ,445
CornerNet-Lite (2019) (https://arxiv.org/abs/1904.08900)
CenterNet: Keypoint Triplets for Object Detection 2019,129
FCOS: Fully Convolutional One-Stage Object Detection 2019,206
Feature Selective Anchor-Free Module for Single-Shot Object Detection,144

object detection 总结的更多相关文章

  1. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  2. 论文阅读(Chenyi Chen——【ACCV2016】R-CNN for Small Object Detection)

    Chenyi Chen--[ACCV2016]R-CNN for Small Object Detection 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 总结与收获点 参考文献 ...

  3. deep learning on object detection

    回归工作一周,忙的头晕,看了两三篇文章,主要在写各种文档和走各种办事流程了-- 这次来写写object detection最近看的三篇文章吧.都不是最近的文章,但是是今年的文章,我也想借此让自己赶快熟 ...

  4. 论文阅读之 DECOLOR: Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation

    DECOLOR: Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation Xia ...

  5. 目标检测--Rich feature hierarchies for accurate object detection and semantic segmentation(CVPR 2014)

    Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick J ...

  6. object detection技术演进:RCNN、Fast RCNN、Faster RCNN

    object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...

  7. TensorFlow Object Detection API(Windows下测试)

    "Speed/accuracy trade-offs for modern convolutional object detectors." Huang J, Rathod V, ...

  8. Object Detection · RCNN论文解读

    转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object D ...

  9. 使用TensorFlow Object Detection API+Google ML Engine训练自己的手掌识别器

    上次使用Google ML Engine跑了一下TensorFlow Object Detection API中的Quick Start(http://www.cnblogs.com/take-fet ...

  10. Object Detection︱RCNN、faster-RCNN框架的浅读与延伸内容笔记

    一.RCNN,fast-RCNN.faster-RCNN进化史 本节由CDA深度学习课堂,唐宇迪老师教课,非常感谢唐老师课程中的论文解读,很有帮助. . 1.Selective search 如何寻找 ...

随机推荐

  1. tf.nn.conv2d函数和tf.nn.max_pool函数介绍

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介绍参数: input:指卷积需要输入的 ...

  2. Quartz.Net系列(十四):详解Job中两大特性(DisallowConcurrentExecution、PersistJobDataAfterExecution)

    1.DisallowConcurrentExceution 从字面意思来看也就是不允许并发执行 简单的演示一下 [DisallowConcurrentExecution] public class T ...

  3. ArcGIS 10.2安装及卸载教程

    卸载 在控制面板中找到程序->卸载程序 找到ArcGIS的相关软件 这里以ArcGIS 10.2 Destop为例,选中,然后点击卸载,会出现如下界面 选择Remove,然后根据提示进行操作,即 ...

  4. 04-Python函数

    一.简介 函数是可重用的程序代码块.函数的作用,不仅可以实现代码的复用,更能实现代码的一致性.一致性指的是,只要修改函数的代码,则所有调用该函数的地方都能得到体现. 函数用关键字def来定义,def关 ...

  5. 题解 CF510E 【Fox And Dinner】

    可以用网络流解决这个题. 注意到\(a_i \geqslant 2\),所以当相邻数字要和为质数时,这两个数要一个为奇数,一个为偶数. 所以就先将所有数按奇偶分为两列,其就构成了一个二分图,二分图中和 ...

  6. java 多线程的售票问题

    java 多线程的售票问题 对票的库存进行操作 public class Tickets implements Runnable{ private int ticket = 100; public v ...

  7. Zuul原理

    @EnableZuulProxy和@EnableZuulServer @EnableZuulProxy和@EnableZuulServer通过实例化不同的Marker,走不同的AutoConfigur ...

  8. Ribbon负载均衡接口

    IRule--负载均衡规则 1.RounRobinRule:轮询负载均衡,通过累加取余获取服务,默认规则 2.RandomRule:随机负载均衡 3.WeightedResponseTimeRule: ...

  9. 【Nginx】如何使用Nginx搭建流媒体服务器实现直播?看完这篇我会了!!

    写在前面 最近几年,直播行业比较火,无论是传统行业的直播,还是购物.游戏.教育,都在涉及直播.作为在互联网行业奋斗了多年的小伙伴,你有没有想过如果使用Nginx搭建一套直播环境,那我们该如何搭建呢?别 ...

  10. Oracle连接报错之IO异常(The Network Adapter could not establish the connection)

    简单介绍:自己封装oracle jdbc的一些常用功能jar包,自己本机玩没啥问题,给别人玩儿,发现总是抛异常 IO异常(The Network Adapter could not establish ...