【前言】主成分分析(PCA)实现一般有两种,一种是对于方阵用特征值分解去实现的,一种是对于不是方阵的用奇异值(SVD)分解去实现的。

一、特征值

  特征值很好理解,特征值和特征向量代表了一个矩阵最鲜明的特征方向。多个特征值和特征向量的线性组合可以表示此矩阵。选取特征值最大的特征值对应的特征向量,此特征向量在组成矩阵的线性组合中所占的比重是最大的。一般选取前一半就可,实现降维。

二、奇异值
  这里主要谈谈如何用SVD去解PCA的问题。PCA的问题其实是一个基的变换,使得变换后的数据有着最大的方差。方差的大小描述的是一个变量的信息量。我们在讲一个东西的稳定性的时候,往往说要减小方差,如果一个模型的方差很大,那就说明模型不稳定了。但是对于我们用于机器学习的数据(主要是训练数据),方差大才有意义,不然输入的数据都是同一个点,那方差就为0了,这样输入的多个数据就等同于一个数据了。以下面这张图为例子:
 

 
    这个假设是一个摄像机采集一个物体运动得到的图片,上面的点表示物体运动的位置,假如我们想要用一条直线去拟合这些点,那我们会选择什么方向的线呢?当然是图上标有signal的那条线。如果我们把这些点单纯的投影到x轴或者y轴上,最后在x轴与y轴上得到的方差是相似的(因为这些点的趋势是在45度左右的方向,所以投影到x轴或者y轴上都是类似的),如果我们使用原来的xy坐标系去看这些点,容易看不出来这些点真正的方向是什么。但是如果我们进行坐标系的变化,横轴变成了signal的方向,纵轴变成了noise的方向,则就很容易发现什么方向的方差大,什么方向的方差小了。
    一般来说,方差大的方向是信号的方向,方差小的方向是噪声的方向,我们在数据挖掘中或者数字信号处理中,往往要提高信号与噪声的比例,也就是信噪比。对上图来说,如果我们只保留signal方向的数据,也可以对原数据进行不错的近似了。
  PCA的全部工作简单点说,就是对原始的空间中顺序地找一组相互正交的坐标轴,第一个轴是使得方差最大的,第二个轴是在与第一个轴正交的平面中使得方差最大的,第三个轴是在与第1、2个轴正交的平面中方差最大的,这样假设在N维空间中,我们可以找到N个这样的坐标轴,我们取前r个去近似这个空间,这样就从一个N维的空间压缩到r维的空间了,但是我们选择的r个坐标轴能够使得空间的压缩使得数据的损失最小。
   1、还是假设我们矩阵每一行表示一个样本,每一列表示一个feature,用矩阵的语言来表示,将一个m * n的矩阵A的进行坐标轴的变化,P就是一个变换的矩阵从一个N维的空间变换到另一个N维的空间,在空间中就会进行一些类似于旋转、拉伸的变化。

  2、而将一个m * n的矩阵A变换成一个m * r的矩阵,这样就会使得本来有n个feature的,变成了有r个feature了(r < n),这r个其实就是对n个feature的一种提炼,我们就把这个称为feature的压缩。用数学语言表示就是:

  3、但是这个怎么和SVD扯上关系呢?之前谈到,SVD得出的奇异向量也是从奇异值由大到小排列的,按PCA的观点来看,就是方差最大的坐标轴就是第一个奇异向量,方差次大的坐标轴就是第二个奇异向量…我们回忆一下之前得到的SVD式子:

  4、在矩阵的两边同时乘上一个矩阵V,由于V是一个正交的矩阵,所以V转置乘以V得到单位阵I,所以可以化成后面的式子:
  5、将后面的式子与A * P那个m * n的矩阵变换为m * r的矩阵的式子对照看看,在这里,其实V就是P,也就是一个变化的向量。这里是将一个m * n 的矩阵压缩到一个m * r的矩阵,也就是对列进行压缩,如果我们想对行进行压缩(在PCA的观点下,对行进行压缩可以理解为,将一些相似的sample合并在一起或者将一些没有太大价值的sample去掉)怎么办呢?同样我们写出一个通用的行压缩例子:
  
  6、这样就从一个m行的矩阵压缩到一个r行的矩阵了,对SVD来说也是一样的,我们对SVD分解的式子两边乘以U的转置U':

    7、这样我们就得到了对行进行压缩的式子。可以看出,其实PCA几乎可以说是对SVD的一个包装,如果我们实现了SVD,那也就实现了PCA了。

三、总结

  而且更好的地方是,有了SVD,我们就可以得到两个方向的PCA,如果我们对A’A进行特征值的分解,只能得到一个方向的PCA。

PCA主成分分析的矩阵原理的更多相关文章

  1. 用PCA(主成分分析法)进行信号滤波

    用PCA(主成分分析法)进行信号滤波 此文章从我之前的C博客上导入,代码什么的可以参考matlab官方帮助文档 现在网上大多是通过PCA对数据进行降维,其实PCA还有一个用处就是可以进行信号滤波.网上 ...

  2. 机器学习之PCA主成分分析

    前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很 ...

  3. PCA主成分分析Python实现

    作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/c ...

  4. 机器学习 - 算法 - PCA 主成分分析

    PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优 ...

  5. PCA主成分分析(上)

    PCA主成分分析 PCA目的 最大可分性(最大投影方差) 投影 优化目标 关键点 推导 为什么要找最大特征值对应的特征向量呢? 之前看3DMM的论文的看到其用了PCA的方法,一开始以为自己对于PCA已 ...

  6. PCA(主成分分析)方法浅析

    PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确, ...

  7. PCA 主成分分析

    链接1 链接2(原文地址) PCA的数学原理(转) PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表 ...

  8. 【建模应用】PCA主成分分析原理详解

    原文载于此:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识发现 ...

  9. PCA(主成分分析)原理,步骤详解以及应用

    主成分分析(PCA, Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维处理 通过降维,可以发现更便于人类理解的特征 其他应用:数据可视化,去噪等 ...

随机推荐

  1. shell编程基础一

    1.定义变量 a=1 shell定义变量要注意等号前后不能有空格,不然会报错,请严格按照格式编写. 2.打印输出 echo 1 使用echo打印,后面留一个空格. 3.shell中通过 ${变量名} ...

  2. hdu3559 Frost Chain (概率dp+记忆化搜索)

    Problem Description In the unimaginable popular DotA game, the hero Lich has a wonderful skill: Fros ...

  3. 【noi 2.6_6045】开餐馆(DP)

    题意:有N个地址,从中选一些开餐馆,要保证相邻餐馆的距离大于k.问最大利润. 解法:f[i]表示在前 i 个地址中选的最大利润. 1 #include<cstdio> 2 #include ...

  4. Codeforces Round #653 (Div. 3) C. Move Brackets

    题意/题解:经典括号匹配题目,不多说了. 代码: int t; int n; string s; int cnt; int main() { ios::sync_with_stdio(false);c ...

  5. K8S(10)配置中心实战-configmap资源

    k8s配置中心实战-configmap资源 目录 k8s配置中心实战-configmap资源 0 configmap前置说明 0.1.1 configmap和secret 0.1.2 怎么使用conf ...

  6. LINUX - pthread_mutex_lock

    原文链接:https://www.cnblogs.com/fengbohello/p/7571722.html 互斥的概念 在多线程编程中,引入了对象互斥锁的概念,来保证共享数据操作的完整性. 每个对 ...

  7. woj1005-holding animals-01pack woj1006-Language of animals-BFS

    title: woj1005-holding animals-01pack date: 2020-03-05 categories: acm tags: [acm,woj,pack] 01背包.中等题 ...

  8. Java之大数相加

    之前参加某公司笔试,机试题目是大数相加,两大数是字符串形式,求和. 当时讨巧用的是BigDecimal类,但是发迷糊了,以为b1.add(b2)后,和就加到b1上了,结果一直输出不对. 其实应该是这样 ...

  9. codeforce 855B

    B. Marvolo Gaunt's Ring time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  10. c# xaml (1)

    原文:https://www.wpf-tutorial.com/xaml/what-is-xaml/ vs2017 新建 wpf 项目,在解决方案里会自动创建MainWindow.xaml文件 1.新 ...