简介

上篇文章我们简单的介绍了nodejs中的事件event和事件循环event loop。本文本文将会更进一步,继续讲解nodejs中的event,并探讨一下setTimeout,setImmediate和process.nextTick的区别。

nodejs中的事件循环

虽然nodejs是单线程的,但是nodejs可以将操作委托给系统内核,系统内核在后台处理这些任务,当任务完成之后,通知nodejs,从而触发nodejs中的callback方法。

这些callback会被加入轮循队列中,最终被执行。

通过这样的event loop设计,nodejs最终可以实现非阻塞的IO。

nodejs中的event loop被分成了一个个的phase,下图列出了各个phase的执行顺序:

每个phase都会维护一个callback queue,这是一个FIFO的队列。

当进入一个phase之后,首先会去执行该phase的任务,然后去执行属于该phase的callback任务。

当这个callback队列中的任务全部都被执行完毕或达到了最大的callback执行次数之后,就会进入下一个phase。

注意, windows和linux的具体实现有稍许不同,这里我们只关注最重要的几个phase。

问题:phase的执行过程中,为什么要限制最大的callback执行次数呢?

回答:在极端情况下,某个phase可能会需要执行大量的callback,如果执行这些callback花费了太多的时间,那么将会阻塞nodejs的运行,所以我们设置callback执行的次数限制,以避免nodejs的长时间block。

phase详解

上面的图中,我们列出了6个phase,接下来我们将会一一的进行解释。

timers

timers的中文意思是定时器,也就是说在给定的时间或者时间间隔去执行某个callback函数。

通常的timers函数有这样两种:setTimeout和setInterval。

一般来说这些callback函数会在到期之后尽可能的执行,但是会受到其他callback执行的影响。 我们来看一个例子:

const fs = require('fs');

function someAsyncOperation(callback) {
// Assume this takes 95ms to complete
fs.readFile('/path/to/file', callback);
} const timeoutScheduled = Date.now(); setTimeout(() => {
const delay = Date.now() - timeoutScheduled; console.log(`${delay}ms have passed since I was scheduled`);
}, 100); // do someAsyncOperation which takes 95 ms to complete
someAsyncOperation(() => {
const startCallback = Date.now(); // do something that will take 10ms...
while (Date.now() - startCallback < 10) {
// do nothing
}
});

上面的例子中,我们调用了someAsyncOperation,这个函数首先回去执行readFile方法,假设这个方法耗时95ms。接着执行readFile的callback函数,这个callback会执行10ms。最后才回去执行setTimeout中的callback。

所以上面的例子中,虽然setTimeout指定要在100ms之后运行,但是实际上还要等待95 + 10 = 105 ms之后才会真正的执行。

pending callbacks

这个phase将会执行一些系统的callback操作,比如在做TCP连接的时候,TCP socket接收到了ECONNREFUSED信号,在某些liunx操作系统中将会上报这个错误,那么这个系统的callback将会放到pending callbacks中运行。

或者是需要在下一个event loop中执行的I/O callback操作。

idle, prepare

idle, prepare是内部使用的phase,这里就不过多介绍。

poll轮询

poll将会检测新的I/O事件,并执行与I / O相关的回调,注意这里的回调指的是除了关闭callback,timers,和setImmediate之外的几乎所有的callback事件。

poll主要处理两件事情:轮询I/O,并且计算block的时间,然后处理poll queue中的事件。

如果poll queue非空的话,event loop将会遍历queue中的callback,然后一个一个的同步执行,知道queue消费完毕,或者达到了callback数量的限制。

因为queue中的callback是一个一个同步执行的,所以可能会出现阻塞的情况。

如果poll queue空了,如果代码中调用了setImmediate,那么将会立马跳到下一个check phase,然后执行setImmediate中的callback。 如果没有调用setImmediate,那么会继续等待新来的callback被加入到queue中,并执行。

check

主要来执行setImmediate的callback。

setImmediate可以看做是一个运行在单独phase中的独特的timer,底层使用的libuv API来规划callbacks。

一般来说,如果在poll phase中有callback是以setImmediate的方式调用的话,会在poll queue为空的情况下,立马结束poll phase,进入check phase来执行对应的callback方法。

close callbacks

最后一个phase是处理close事件中的callbacks。 比如一个socket突然被关闭,那么将会触发一个close事件,并调用相关的callback。

setTimeout 和 setImmediate的区别

setTimeout和setImmediate有什么不同呢?

从上图的phase阶段可以看出,setTimeout中的callback是在timer phase中执行的,而setImmediate是在check阶段执行的。

从语义上讲,setTimeout指的是,在给定的时间之后运行某个callback。而setImmediate是在执行完当前loop中的 I/O操作之后,立马执行。

那么这两个方法的执行顺序上有什么区别呢?

下面我们举两个例子,第一个例子中两个方法都是在主模块中运行:

setTimeout(() => {
console.log('timeout');
}, 0); setImmediate(() => {
console.log('immediate');
});

这样运行两个方法的执行顺序是不确定,因为可能受到其他执行程序的影响。

第二个例子是在I/O模块中运行这两个方法:

const fs = require('fs');

fs.readFile(__filename, () => {
setTimeout(() => {
console.log('timeout');
}, 0);
setImmediate(() => {
console.log('immediate');
});
});

你会发现,在I/O模块中,setImmediate一定会在setTimeout之前执行。

两者的共同点

setTimeout和setImmediate两者都有一个返回值,我们可以通过这个返回值,来对timer进行clear操作:

const timeoutObj = setTimeout(() => {
console.log('timeout beyond time');
}, 1500); const immediateObj = setImmediate(() => {
console.log('immediately executing immediate');
}); const intervalObj = setInterval(() => {
console.log('interviewing the interval');
}, 500); clearTimeout(timeoutObj);
clearImmediate(immediateObj);
clearInterval(intervalObj);

clear操作也可以clear intervalObj。

unref 和 ref

setTimeout和setInterval返回的对象都是Timeout对象。

如果这个timeout对象是最后要执行的timeout对象,那么可以使用unref方法来取消其执行,取消执行完毕,可以使用ref来恢复它的执行。

const timerObj = setTimeout(() => {
console.log('will i run?');
}); timerObj.unref(); setImmediate(() => {
timerObj.ref();
});

注意,如果有多个timeout对象,只有最后一个timeout对象的unref方法才会生效。

process.nextTick

process.nextTick也是一种异步API,但是它和timer是不同的。

如果我们在一个phase中调用process.nextTick,那么nextTick中的callback会在这个phase完成,进入event loop的下一个phase之前完成。

这样做就会有一个问题,如果我们在process.nextTick中进行递归调用的话,这个phase将会被阻塞,影响event loop的正常执行。

那么,为什么我们还会有process.nextTick呢?

考虑下面的一个例子:

let bar;

function someAsyncApiCall(callback) { callback(); }

someAsyncApiCall(() => {
console.log('bar', bar); // undefined
}); bar = 1;

上面的例子中,我们定义了一个someAsyncApiCall方法,里面执行了传入的callback函数。

这个callback函数想要输出bar的值,但是bar的值是在someAsyncApiCall方法之后被赋值的。

这个例子最终会导致输出的bar值是undefined。

我们的本意是想让用户程序执行完毕之后,再调用callback,那么我们可以使用process.nextTick来对上面的例子进行改写:

let bar;

function someAsyncApiCall(callback) {
process.nextTick(callback);
} someAsyncApiCall(() => {
console.log('bar', bar); // 1
}); bar = 1;

我们再看一个实际中使用的例子:

const server = net.createServer(() => {}).listen(8080);

server.on('listening', () => {});

上面的例子是最简单的nodejs创建web服务。

上面的例子有什么问题呢?listen(8000) 方法将会立马绑定8000端口。但是这个时候,server的listening事件绑定代码还没有执行。

这里实际上就用到了process.nextTick技术,从而不管我们在什么地方绑定listening事件,都可以监听到listen事件。

process.nextTick 和 setImmediate 的区别

process.nextTick 是立马在当前phase执行callback,而setImmediate是在check阶段执行callback。

所以process.nextTick要比setImmediate的执行顺序优先。

实际上,process.nextTick和setImmediate的语义应该进行互换。因为process.nextTick表示的才是immediate,而setImmediate表示的是next tick。

本文作者:flydean程序那些事

本文链接:http://www.flydean.com/nodejs-event-more/

本文来源:flydean的博客

欢迎关注我的公众号:「程序那些事」最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

nodejs事件和事件循环详解的更多相关文章

  1. 详解C#泛型(二) 获取C#中方法的执行时间及其代码注入 详解C#泛型(一) 详解C#委托和事件(二) 详解C#特性和反射(四) 记一次.net core调用SOAP接口遇到的问题 C# WebRequest.Create 锚点“#”字符问题 根据内容来产生一个二维码

    详解C#泛型(二)   一.自定义泛型方法(Generic Method),将类型参数用作参数列表或返回值的类型: void MyFunc<T>() //声明具有一个类型参数的泛型方法 { ...

  2. android事件拦截处理机制详解

    前段时间刚接触过Android手机开发,对它的事件传播机制不是很了解,虽然网上也查了相关的资料,但是总觉得理解模模糊糊,似是而非,于是自己就写个小demo测试了一下.总算搞明白了它的具体机制.写下自己 ...

  3. PHP中foreach循环详解

    首先要说的是,其实我对foreach循环的用法并不是很精通,说详解,其实也只是我自己的理解,希望对你能有点帮助 . 先来看一下foreach的语法: foreach ($array as $key=& ...

  4. 循环(数组循环、获取json数据循环)、each()循环详解

    return; // 退出循环(不满足,退出此次循环.下次满足条件,依然会走此循环)return false; //退出函数(退出所有) 一. 数组循环: html: <div class=&q ...

  5. Uploadify 3.2 参数属性、事件、方法函数详解

    一.属性 属性名称 默认值 说明 auto true 设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传 . buttonClass ” 按钮样式 buttonCursor ‘ ...

  6. (转)Uploadify 3.2 参数属性、事件、方法函数详解

    转自http://blog.sina.com.cn/s/blog_5079086b0101fkmh.html Hallelujah博客 一.属性 属性名称 默认值 说明 auto true 设置为tr ...

  7. js事件监听器用法实例详解

    这篇文章主要介绍了js事件监听器用法,以实例形式较为详细的分析了javascript事件监听器使用注意事项与相关技巧,需要的朋友可以参考下本文实例讲述了js事件监听器用法.分享给大家供大家参考.具体分 ...

  8. AngularJS事件绑定的使用详解

    本文和大家分享的主要是AngularJS中事件绑定相关知识点,希望通过本文的分享,对大家学习和使用AngularJS有所帮助. 1.绑定事件:表达式.事件方法名: 2.绑定点击事件实例:显示.隐藏页面 ...

  9. ucos事件邮箱信号量队列详解

    Ucos的事件分为时钟,信号量,互斥性信号量,消息队列,以及消息邮箱 首先说信号量 信号量在ucos中的类型定义为OS_EVENT_TYPE_SEM,在任务控制块ecb中,主要是用到的是信号量计数器O ...

随机推荐

  1. es6交换两个值

    let a='a',b='b' let [a,b]=[b,a];//借助数组解构 let {a:b,b:a}={a,b}//利用别名进行对象解构

  2. 题解 CF1428F Fruit Sequences

    \(\texttt{Bullshit}\) 蒟蒻 \(\texttt{7 min}\) 切 \(\texttt{F}\), 挽回了本一定掉分的局面/cy 分竟然还没有别人 5 题高 (本题解为目前 c ...

  3. 【CH 弱省互测 Round #1 】OVOO(可持久化可并堆)

    Description 给定一颗 \(n\) 个点的树,带边权. 你可以选出一个包含 \(1\) 顶点的连通块,连通块的权值为连接块内这些点的边权和. 求一种选法,使得这个选法的权值是所有选法中第 \ ...

  4. redis学习之——持久化RDB 和AOF

    RDB: 在指定的时间间隔内将内存中的数据集快照写入磁盘, 也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里.rdb 保存的是dump.rdb文件 RDB工作原理: Redis会 ...

  5. mybatis逆向工程运行

    命令: mvn mybatis-generator:generate 项目结构: generatorConfig.xml内容示例 <?xml version="1.0" en ...

  6. Linux修改系统时间为东八区北京时间(上海时间)

    1. Linux时间   Linux的时间分为 System Clock(系统时间)和 Real Time Clock(硬件时间,简称RTC).   系统时间:指系统内核中的时间.   硬件时间:指主 ...

  7. 交换机配置OSPF负载分担

    组网图形 OSPF负载分担简介 等价负载分担ECMP(Equal-Cost Multiple Path),是指在两个网络节点之间同时存在多条路径时,节点间的流量在多条路径上平均分摊.负载分担的作用是减 ...

  8. DRF使用超链接API实现真正RESTful

    很多API并不是真正的实现了RESTful,而应该叫做RPC (Remote Procedure Call 远程过程调用),Roy Fielding曾经提到了它们的区别,原文如下: I am gett ...

  9. 【Tomcat】Tomcat服务器核心配置说明及标签

    目录 一,主要标签结构 二,Server标签 标签属性: 子标签: 三,Service 标签 子标签: 四,Executor 标签 属性: 五,Connector标签 属性: 六,Engine标签 属 ...

  10. Apache Cassandra——可扩展微服务应用程序的持久数据存储

    通过使用微服务,团队可以更快地响应变化,而无需改动整个应用程序.利用微服务,开发团队可以构建出具有鲁棒性和可扩展性的系统,从而适应当今应用程序的需求.   然而,使用微服务也带来了一系列挑战.在本文中 ...